地球物理、地质和岩土工程调查数据的贝叶斯地层学整合

Z. Medina-Cetina, J. Son, M. Moradi
{"title":"地球物理、地质和岩土工程调查数据的贝叶斯地层学整合","authors":"Z. Medina-Cetina, J. Son, M. Moradi","doi":"10.4043/29674-MS","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a probabilistic approach to significantly improve offshore site characterization from integrated geophysical, geological and geotechnical survey data, and from different technologies used from within each of these disciplines. The proposed Bayesian stratigraphy integration methodology is based on the sequential integration of available evidence (experimental observations, model predictions and experts’ beliefs), which allows for the reduction of uncertainty and improve the quality of geospatial analysis translated into higher stratigraphy resolution and higher confidence on the determination of sediments’ mechanical characteristics. A synthetic case study for a 2D heterogeneous shallow offshore soil media is presented to illustrate the overall methodology. One application of probabilistic cluster identification based on geological data is discussed (e.g. 1D density upscaling profile), as this is then transferred to a probabilistic geophysical inversion, including the corresponding uncertainty propagation and.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian Stratigraphy Integration of Geophysical, Geological, and Geotechnical Surveys Data\",\"authors\":\"Z. Medina-Cetina, J. Son, M. Moradi\",\"doi\":\"10.4043/29674-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a probabilistic approach to significantly improve offshore site characterization from integrated geophysical, geological and geotechnical survey data, and from different technologies used from within each of these disciplines. The proposed Bayesian stratigraphy integration methodology is based on the sequential integration of available evidence (experimental observations, model predictions and experts’ beliefs), which allows for the reduction of uncertainty and improve the quality of geospatial analysis translated into higher stratigraphy resolution and higher confidence on the determination of sediments’ mechanical characteristics. A synthetic case study for a 2D heterogeneous shallow offshore soil media is presented to illustrate the overall methodology. One application of probabilistic cluster identification based on geological data is discussed (e.g. 1D density upscaling profile), as this is then transferred to a probabilistic geophysical inversion, including the corresponding uncertainty propagation and.\",\"PeriodicalId\":10968,\"journal\":{\"name\":\"Day 3 Wed, May 08, 2019\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 08, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29674-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29674-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种概率方法,可以通过综合地球物理、地质和岩土工程调查数据,以及这些学科中使用的不同技术,显著改善海上场地的特征。提出的贝叶斯地层学整合方法是基于现有证据(实验观察、模型预测和专家的信念)的顺序整合,这可以减少不确定性,提高地理空间分析的质量,从而转化为更高的地层学分辨率和沉积物力学特征确定的更高置信度。本文以二维非均质浅海土壤介质为例,阐述了整体方法。讨论了基于地质数据的概率聚类识别的一种应用(例如,一维密度升级剖面),因为它随后被转移到概率地球物理反演,包括相应的不确定性传播和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Stratigraphy Integration of Geophysical, Geological, and Geotechnical Surveys Data
This paper introduces a probabilistic approach to significantly improve offshore site characterization from integrated geophysical, geological and geotechnical survey data, and from different technologies used from within each of these disciplines. The proposed Bayesian stratigraphy integration methodology is based on the sequential integration of available evidence (experimental observations, model predictions and experts’ beliefs), which allows for the reduction of uncertainty and improve the quality of geospatial analysis translated into higher stratigraphy resolution and higher confidence on the determination of sediments’ mechanical characteristics. A synthetic case study for a 2D heterogeneous shallow offshore soil media is presented to illustrate the overall methodology. One application of probabilistic cluster identification based on geological data is discussed (e.g. 1D density upscaling profile), as this is then transferred to a probabilistic geophysical inversion, including the corresponding uncertainty propagation and.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offshore Liquefied Natural Gas LNG and Monetization A Case Study of an Independent Third Party Review of Subsea HPHT Technologies Designed and Qualified by a Joint Development Agreement Optimized SMR Process with Advanced Vessel Economizer Experimental and Numerical Studies on the Drift Velocity of Two-Phase Gas and High-Viscosity-Liquid Slug Flow in Pipelines Applied Optimal Reservoir Management: A Field Case Experience in Campos Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1