通过经验熵的条件密度估计的极大极小率

Blair Bilodeau, Dylan J. Foster, Daniel M. Roy
{"title":"通过经验熵的条件密度估计的极大极小率","authors":"Blair Bilodeau, Dylan J. Foster, Daniel M. Roy","doi":"10.1214/23-AOS2270","DOIUrl":null,"url":null,"abstract":"We consider the task of estimating a conditional density using i.i.d. samples from a joint distribution, which is a fundamental problem with applications in both classification and uncertainty quantification for regression. For joint density estimation, minimax rates have been characterized for general density classes in terms of uniform (metric) entropy, a well-studied notion of statistical capacity. When applying these results to conditional density estimation, the use of uniform entropy -- which is infinite when the covariate space is unbounded and suffers from the curse of dimensionality -- can lead to suboptimal rates. Consequently, minimax rates for conditional density estimation cannot be characterized using these classical results. We resolve this problem for well-specified models, obtaining matching (within logarithmic factors) upper and lower bounds on the minimax Kullback--Leibler risk in terms of the empirical Hellinger entropy for the conditional density class. The use of empirical entropy allows us to appeal to concentration arguments based on local Rademacher complexity, which -- in contrast to uniform entropy -- leads to matching rates for large, potentially nonparametric classes and captures the correct dependence on the complexity of the covariate space. Our results require only that the conditional densities are bounded above, and do not require that they are bounded below or otherwise satisfy any tail conditions.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Minimax rates for conditional density estimation via empirical entropy\",\"authors\":\"Blair Bilodeau, Dylan J. Foster, Daniel M. Roy\",\"doi\":\"10.1214/23-AOS2270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of estimating a conditional density using i.i.d. samples from a joint distribution, which is a fundamental problem with applications in both classification and uncertainty quantification for regression. For joint density estimation, minimax rates have been characterized for general density classes in terms of uniform (metric) entropy, a well-studied notion of statistical capacity. When applying these results to conditional density estimation, the use of uniform entropy -- which is infinite when the covariate space is unbounded and suffers from the curse of dimensionality -- can lead to suboptimal rates. Consequently, minimax rates for conditional density estimation cannot be characterized using these classical results. We resolve this problem for well-specified models, obtaining matching (within logarithmic factors) upper and lower bounds on the minimax Kullback--Leibler risk in terms of the empirical Hellinger entropy for the conditional density class. The use of empirical entropy allows us to appeal to concentration arguments based on local Rademacher complexity, which -- in contrast to uniform entropy -- leads to matching rates for large, potentially nonparametric classes and captures the correct dependence on the complexity of the covariate space. Our results require only that the conditional densities are bounded above, and do not require that they are bounded below or otherwise satisfy any tail conditions.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-AOS2270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-AOS2270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑使用联合分布的i.i.d样本估计条件密度的任务,这是回归分类和不确定性量化应用中的一个基本问题。对于联合密度估计,一般密度类的极大极小率已经用均匀(度量)熵来表征,这是一个被充分研究的统计能力的概念。当将这些结果应用于条件密度估计时,使用均匀熵(当协变量空间无界并遭受维度诅咒时,均匀熵是无限的)可能导致次优率。因此,条件密度估计的极大极小率不能用这些经典结果来表征。我们为明确的模型解决了这个问题,根据条件密度类的经验Hellinger熵,获得了最小-最大Kullback- Leibler风险的上界和下界(在对数因子内)。经验熵的使用使我们能够诉诸于基于局部Rademacher复杂度的集中论证,这与均匀熵相反,导致了大型,潜在的非参数类的匹配率,并捕获了对协变量空间复杂性的正确依赖。我们的结果只要求条件密度在上面有界,而不要求它们在下面有界或满足任何尾部条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimax rates for conditional density estimation via empirical entropy
We consider the task of estimating a conditional density using i.i.d. samples from a joint distribution, which is a fundamental problem with applications in both classification and uncertainty quantification for regression. For joint density estimation, minimax rates have been characterized for general density classes in terms of uniform (metric) entropy, a well-studied notion of statistical capacity. When applying these results to conditional density estimation, the use of uniform entropy -- which is infinite when the covariate space is unbounded and suffers from the curse of dimensionality -- can lead to suboptimal rates. Consequently, minimax rates for conditional density estimation cannot be characterized using these classical results. We resolve this problem for well-specified models, obtaining matching (within logarithmic factors) upper and lower bounds on the minimax Kullback--Leibler risk in terms of the empirical Hellinger entropy for the conditional density class. The use of empirical entropy allows us to appeal to concentration arguments based on local Rademacher complexity, which -- in contrast to uniform entropy -- leads to matching rates for large, potentially nonparametric classes and captures the correct dependence on the complexity of the covariate space. Our results require only that the conditional densities are bounded above, and do not require that they are bounded below or otherwise satisfy any tail conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1