前期土壤含水量和降雨状况对微地形变化的影响

Andrea Rudolph , Katharina Helming , Heiko Diestel
{"title":"前期土壤含水量和降雨状况对微地形变化的影响","authors":"Andrea Rudolph ,&nbsp;Katharina Helming ,&nbsp;Heiko Diestel","doi":"10.1016/0933-3630(95)00040-2","DOIUrl":null,"url":null,"abstract":"<div><p>Surface microrelief substantially affects surface sealing, runoff, and soil erosion processes on bare soils. Yet, the stability of microrelief for different antecedent soil water contents and rainstorms is not well understood. This study investigates the effect of surface microrelief and antecedent water content on the decay of microrelief under different rainstorm regimes. Two different rainstorm regimes were studied in laboratory experiments: continuous rainfall for a total amount of 60 mm applied at 30 mm/h intensity, and intermittent rainfall consisting of five successive rainstorms of 12 mm each, again with an intensity of 30 mm/h and separated by one week drying cycles. Rough, medium, and fine microrelief surface conditions representing different degrees of seedbed preparation were studied for three soils at antecedent soil water contents of 2–4% and 14–20%. Before and after rainfall, digital elevation models determining the surface microrelief were developed using a laser scanner with 2 mm grid spacing. The specific surface area calculated from microrelief data was used as an index to characterize microrelief. Microrelief stability increased with increasing initial roughness and was much higher for the antecedent wet soils than for the dry soils. Microrelief stability for the continuous rainstorm regime was higher than for intermittent rainfall. Differences in microrelief stability were mostly attributed to different aggregate stabilities. Additionally, the higher stability for the rougher microrelief surfaces was attributed to the lower drop impact density and splash density on the surfaces with larger specific surface area. Aggregate slaking due to air escape and rapid wetting was found to be responsible for the low microrelief stability at initially dry conditions.</p></div>","PeriodicalId":101170,"journal":{"name":"Soil Technology","volume":"10 1","pages":"Pages 69-81"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0933-3630(95)00040-2","citationCount":"41","resultStr":"{\"title\":\"Effect of antecedent soil water content and rainfall regime on microrelief changes\",\"authors\":\"Andrea Rudolph ,&nbsp;Katharina Helming ,&nbsp;Heiko Diestel\",\"doi\":\"10.1016/0933-3630(95)00040-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface microrelief substantially affects surface sealing, runoff, and soil erosion processes on bare soils. Yet, the stability of microrelief for different antecedent soil water contents and rainstorms is not well understood. This study investigates the effect of surface microrelief and antecedent water content on the decay of microrelief under different rainstorm regimes. Two different rainstorm regimes were studied in laboratory experiments: continuous rainfall for a total amount of 60 mm applied at 30 mm/h intensity, and intermittent rainfall consisting of five successive rainstorms of 12 mm each, again with an intensity of 30 mm/h and separated by one week drying cycles. Rough, medium, and fine microrelief surface conditions representing different degrees of seedbed preparation were studied for three soils at antecedent soil water contents of 2–4% and 14–20%. Before and after rainfall, digital elevation models determining the surface microrelief were developed using a laser scanner with 2 mm grid spacing. The specific surface area calculated from microrelief data was used as an index to characterize microrelief. Microrelief stability increased with increasing initial roughness and was much higher for the antecedent wet soils than for the dry soils. Microrelief stability for the continuous rainstorm regime was higher than for intermittent rainfall. Differences in microrelief stability were mostly attributed to different aggregate stabilities. Additionally, the higher stability for the rougher microrelief surfaces was attributed to the lower drop impact density and splash density on the surfaces with larger specific surface area. Aggregate slaking due to air escape and rapid wetting was found to be responsible for the low microrelief stability at initially dry conditions.</p></div>\",\"PeriodicalId\":101170,\"journal\":{\"name\":\"Soil Technology\",\"volume\":\"10 1\",\"pages\":\"Pages 69-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0933-3630(95)00040-2\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0933363095000402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0933363095000402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

地表微起伏对裸露土壤的地表密封、径流和土壤侵蚀过程有很大影响。然而,微地形在不同土壤含水量和暴雨条件下的稳定性尚不清楚。研究了不同暴雨条件下地表微起伏和前期含水量对微起伏衰减的影响。在实验室实验中研究了两种不同的暴雨模式:以30毫米/小时的强度连续降雨,总降雨量为60毫米;以及由5次连续暴雨组成的间歇性降雨,每次暴雨为12毫米,强度再次为30毫米/小时,间隔一周的干燥周期。在土壤含水量为2-4%和14-20%的条件下,分别研究了粗、中、细微坡面条件下不同程度的苗床整备情况。在降雨前后,利用2毫米网格间距的激光扫描仪建立了确定地表微起伏的数字高程模型。利用微地形数据计算的比表面积作为表征微地形的指标。微地形稳定性随初始粗糙度的增加而增加,湿土的微地形稳定性远高于干土。连续暴雨条件下的微地形稳定性高于间歇降雨条件下的微地形稳定性。微地形稳定性的差异主要归因于不同的团聚体稳定性。此外,粗糙的微浮雕表面具有较高的稳定性,这是由于在较大的比表面积表面上具有较低的液滴撞击密度和飞溅密度。在最初的干燥条件下,由于空气逸出和快速润湿导致骨料松弛,导致微地形稳定性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of antecedent soil water content and rainfall regime on microrelief changes

Surface microrelief substantially affects surface sealing, runoff, and soil erosion processes on bare soils. Yet, the stability of microrelief for different antecedent soil water contents and rainstorms is not well understood. This study investigates the effect of surface microrelief and antecedent water content on the decay of microrelief under different rainstorm regimes. Two different rainstorm regimes were studied in laboratory experiments: continuous rainfall for a total amount of 60 mm applied at 30 mm/h intensity, and intermittent rainfall consisting of five successive rainstorms of 12 mm each, again with an intensity of 30 mm/h and separated by one week drying cycles. Rough, medium, and fine microrelief surface conditions representing different degrees of seedbed preparation were studied for three soils at antecedent soil water contents of 2–4% and 14–20%. Before and after rainfall, digital elevation models determining the surface microrelief were developed using a laser scanner with 2 mm grid spacing. The specific surface area calculated from microrelief data was used as an index to characterize microrelief. Microrelief stability increased with increasing initial roughness and was much higher for the antecedent wet soils than for the dry soils. Microrelief stability for the continuous rainstorm regime was higher than for intermittent rainfall. Differences in microrelief stability were mostly attributed to different aggregate stabilities. Additionally, the higher stability for the rougher microrelief surfaces was attributed to the lower drop impact density and splash density on the surfaces with larger specific surface area. Aggregate slaking due to air escape and rapid wetting was found to be responsible for the low microrelief stability at initially dry conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publisher's note Soil erosion in Swaziland: A synthesis Soil erosion and sedimentation in Swaziland: an introduction Factors affecting changes in erosion status in the Swaziland Middleveld A rainfall simulation study of soil erosion on rangeland in Swaziland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1