A. Khan, B. A. Mohamed, S. Al-Shamrani, Ravikumar Ramakrishnaiah, Leila Perea-Lowery, E. Säilynoja, P. Vallittu
{"title":"老化过程中单体体系对树脂复合材料与聚合纤维增强复合材料粘结强度的影响","authors":"A. Khan, B. A. Mohamed, S. Al-Shamrani, Ravikumar Ramakrishnaiah, Leila Perea-Lowery, E. Säilynoja, P. Vallittu","doi":"10.3290/j.jad.a43610","DOIUrl":null,"url":null,"abstract":"PURPOSE This study examined the influence of different monomer systems on the tensile bond strength between a resin composite and a polymerized fiber-reinforced composite (FRC). The influence of the age (shelf-life) of the FRC prepreg (reinforcing fiber pre-impregnated with a resin system) before preparing the FRC substrate for the bonding test was also assessed. MATERIALS AND METHODS Semi-interpenetrating polymer network (semi-IPN)-based glass FRC prepregs were aged for various durations (1, 1.5, and 3 years) at 4°C before being used to prepare FRC substrates via light polymerization. Four groups of aged prepregs were prepared through different treatments with: 1. no primer; 2. a dimethacrylate-based adhesive primer; 3. a universal primer; and 4. a specific composite primer. Subsequently, a resin composite luting cement was applied on the treated FRC substrates and cured with light. The water sorption of the FRC-composite specimens was determined. Then, the differences in the tensile bond strength were evaluated using ANOVA (p ≤ 0.05). RESULTS There were significant differences in the tensile bond strength between the composite cement and the FRC according to the primer used (p < 0.001), aging time (p < 0.001), and their interactive effect (p < 0.001). CONCLUSION The monomers of the universal primer demonstrated the best ability to diffuse into the semi-IPN structure of the polymer matrix of FRC. This improved the interfacial bond strength between the composite cement and the FRC substrate.","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"23 1","pages":"509-516"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Influence of Monomer Systems on the Bond Strength Between Resin Composites and Polymerized Fiber-Reinforced Composite upon Aging.\",\"authors\":\"A. Khan, B. A. Mohamed, S. Al-Shamrani, Ravikumar Ramakrishnaiah, Leila Perea-Lowery, E. Säilynoja, P. Vallittu\",\"doi\":\"10.3290/j.jad.a43610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE This study examined the influence of different monomer systems on the tensile bond strength between a resin composite and a polymerized fiber-reinforced composite (FRC). The influence of the age (shelf-life) of the FRC prepreg (reinforcing fiber pre-impregnated with a resin system) before preparing the FRC substrate for the bonding test was also assessed. MATERIALS AND METHODS Semi-interpenetrating polymer network (semi-IPN)-based glass FRC prepregs were aged for various durations (1, 1.5, and 3 years) at 4°C before being used to prepare FRC substrates via light polymerization. Four groups of aged prepregs were prepared through different treatments with: 1. no primer; 2. a dimethacrylate-based adhesive primer; 3. a universal primer; and 4. a specific composite primer. Subsequently, a resin composite luting cement was applied on the treated FRC substrates and cured with light. The water sorption of the FRC-composite specimens was determined. Then, the differences in the tensile bond strength were evaluated using ANOVA (p ≤ 0.05). RESULTS There were significant differences in the tensile bond strength between the composite cement and the FRC according to the primer used (p < 0.001), aging time (p < 0.001), and their interactive effect (p < 0.001). CONCLUSION The monomers of the universal primer demonstrated the best ability to diffuse into the semi-IPN structure of the polymer matrix of FRC. This improved the interfacial bond strength between the composite cement and the FRC substrate.\",\"PeriodicalId\":94234,\"journal\":{\"name\":\"The journal of adhesive dentistry\",\"volume\":\"23 1\",\"pages\":\"509-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of adhesive dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.a43610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.a43610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Monomer Systems on the Bond Strength Between Resin Composites and Polymerized Fiber-Reinforced Composite upon Aging.
PURPOSE This study examined the influence of different monomer systems on the tensile bond strength between a resin composite and a polymerized fiber-reinforced composite (FRC). The influence of the age (shelf-life) of the FRC prepreg (reinforcing fiber pre-impregnated with a resin system) before preparing the FRC substrate for the bonding test was also assessed. MATERIALS AND METHODS Semi-interpenetrating polymer network (semi-IPN)-based glass FRC prepregs were aged for various durations (1, 1.5, and 3 years) at 4°C before being used to prepare FRC substrates via light polymerization. Four groups of aged prepregs were prepared through different treatments with: 1. no primer; 2. a dimethacrylate-based adhesive primer; 3. a universal primer; and 4. a specific composite primer. Subsequently, a resin composite luting cement was applied on the treated FRC substrates and cured with light. The water sorption of the FRC-composite specimens was determined. Then, the differences in the tensile bond strength were evaluated using ANOVA (p ≤ 0.05). RESULTS There were significant differences in the tensile bond strength between the composite cement and the FRC according to the primer used (p < 0.001), aging time (p < 0.001), and their interactive effect (p < 0.001). CONCLUSION The monomers of the universal primer demonstrated the best ability to diffuse into the semi-IPN structure of the polymer matrix of FRC. This improved the interfacial bond strength between the composite cement and the FRC substrate.