基于统计时频域方法的金属增材制造过程无监督在线异常检测

Alvin Chen, F. Kopsaftopoulos, Sandipan Mishra
{"title":"基于统计时频域方法的金属增材制造过程无监督在线异常检测","authors":"Alvin Chen, F. Kopsaftopoulos, Sandipan Mishra","doi":"10.1115/imece2022-94486","DOIUrl":null,"url":null,"abstract":"\n Fault detection techniques in metal additive manufacturing (AM) have explored a variety of monitoring methods to flag anomalies as they occur during the sintering process. Although many in-situ techniques are able to adeptly detect these abnormalities, several utilize machine learning black box methods that do not easily transfer to varying print geometries. An approach that is adaptable to a multitude of geometries holds an advantage in determining anomalies for more complex cross-sections and raster patterns. To address this lack of a geometry agnosticism, we propose a method that detects faults using the frequency content of the melt pool image response through an unsupervised approach. Scan line length and scan speed extracted from known geometry can be translated to associated frequencies via a spectrogram. We examine three specific geometries to determine detection performance on each by comparing the frequency content to the nominal response. A deviation from the expected performance will signify that an anomaly has occurred. We verify this approach is feasible for fault detection and is accurate in detecting anomalies that are hard to observe in the image time series. A feasible geometry agnostic method and the current interpretability will be discussed in this paper. The results reached in this paper strongly indicate that the approach is promising, has potential for improvement, and that a geometrically independent method is sensible. With further work, a generic algorithm applicable on any geometry will be achievable.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach\",\"authors\":\"Alvin Chen, F. Kopsaftopoulos, Sandipan Mishra\",\"doi\":\"10.1115/imece2022-94486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fault detection techniques in metal additive manufacturing (AM) have explored a variety of monitoring methods to flag anomalies as they occur during the sintering process. Although many in-situ techniques are able to adeptly detect these abnormalities, several utilize machine learning black box methods that do not easily transfer to varying print geometries. An approach that is adaptable to a multitude of geometries holds an advantage in determining anomalies for more complex cross-sections and raster patterns. To address this lack of a geometry agnosticism, we propose a method that detects faults using the frequency content of the melt pool image response through an unsupervised approach. Scan line length and scan speed extracted from known geometry can be translated to associated frequencies via a spectrogram. We examine three specific geometries to determine detection performance on each by comparing the frequency content to the nominal response. A deviation from the expected performance will signify that an anomaly has occurred. We verify this approach is feasible for fault detection and is accurate in detecting anomalies that are hard to observe in the image time series. A feasible geometry agnostic method and the current interpretability will be discussed in this paper. The results reached in this paper strongly indicate that the approach is promising, has potential for improvement, and that a geometrically independent method is sensible. With further work, a generic algorithm applicable on any geometry will be achievable.\",\"PeriodicalId\":23648,\"journal\":{\"name\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属增材制造(AM)中的故障检测技术已经探索了各种监测方法,以标记烧结过程中发生的异常。虽然许多原位技术能够熟练地检测到这些异常,但一些使用机器学习黑箱方法,不容易转移到不同的打印几何形状。一种适用于多种几何形状的方法在确定更复杂的横截面和栅格模式的异常方面具有优势。为了解决这种缺乏几何不可知论的问题,我们提出了一种通过无监督方法使用熔池图像响应的频率内容来检测故障的方法。从已知几何形状中提取的扫描线长度和扫描速度可以通过谱图转换为相关频率。我们研究了三种特定的几何形状,通过比较频率内容和标称响应来确定每种几何形状的检测性能。与预期性能的偏差将表示发生了异常。我们验证了该方法在故障检测中是可行的,并且在检测图像时间序列中难以观察到的异常时是准确的。本文将讨论一种可行的几何不可知论方法及其目前的可解释性。本文的结果表明,该方法是有前途的,具有改进的潜力,并且是一种几何无关的方法。通过进一步的工作,可以实现适用于任何几何形状的通用算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach
Fault detection techniques in metal additive manufacturing (AM) have explored a variety of monitoring methods to flag anomalies as they occur during the sintering process. Although many in-situ techniques are able to adeptly detect these abnormalities, several utilize machine learning black box methods that do not easily transfer to varying print geometries. An approach that is adaptable to a multitude of geometries holds an advantage in determining anomalies for more complex cross-sections and raster patterns. To address this lack of a geometry agnosticism, we propose a method that detects faults using the frequency content of the melt pool image response through an unsupervised approach. Scan line length and scan speed extracted from known geometry can be translated to associated frequencies via a spectrogram. We examine three specific geometries to determine detection performance on each by comparing the frequency content to the nominal response. A deviation from the expected performance will signify that an anomaly has occurred. We verify this approach is feasible for fault detection and is accurate in detecting anomalies that are hard to observe in the image time series. A feasible geometry agnostic method and the current interpretability will be discussed in this paper. The results reached in this paper strongly indicate that the approach is promising, has potential for improvement, and that a geometrically independent method is sensible. With further work, a generic algorithm applicable on any geometry will be achievable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing Design and Numerical Analysis of Locally-Resonant Meta-Lattice Structure for Vibration Attenuation Research on Testing Method and Device of Sensitivity Consistency of Acoustic Emission Sensors Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach Nonlinear Electro-Mechanical Impedance Spectroscopy for Comprehensive Monitoring of Carbon Fiber Reinforced Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1