Mohd Javaid , Abid Haleem , Ravi Pratap Singh , Shahbaz Khan , Rajiv Suman
{"title":"可持续性4.0及其在制造领域的应用","authors":"Mohd Javaid , Abid Haleem , Ravi Pratap Singh , Shahbaz Khan , Rajiv Suman","doi":"10.1016/j.iotcps.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainability 4.0 is being enabled through the effective adoption of modern technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Machine Vision (MV), Data Analytics (DA), Additive Manufacturing (AM) and other modern technologies. These technologies enable services at significantly lower prices due to the effective use of energy and resources with lesser wastage. Manufacturers are constantly looking for methods to lower the operating expenses associated with production processes. Manufacturers might optimise their value chain's production and associated processes by adopting sustainability 4.0 technologies. Such technologies will help manufacturers select their optimal facilities and employees, lower operational costs, enhance productivity and resource utilisation and provide a picture of process gaps that can be addressed. Sustainability is based on the effective use and reuse of resources across the product life cycle, from materials and processes to equipment and skills. Sustainable manufacturing produces manufactured goods using economically viable procedures that reduce negative environmental consequences while preserving energy and natural resources. This paper briefs Sustainability 4.0 and its significant needs. Various fundamental technologies and futuristic research aspects for Sustainability 4.0 are discussed diagrammatically. Finally, we identified and discussed significant applications of Sustainability 4.0 in manufacturing. Sustainability 4.0 refers to a long-term vision for enterprises that allows them to continue perpetually without depleting resources faster than they can be replaced. Sustainability 4.0 entails empowering prosumers to co-create to reshape the economy and society toward social inclusion and environmental sustainability. The use of sustainability and digitisation to solve environmental, social, and economic problems appears hopeful and exhausting.</p></div>","PeriodicalId":100724,"journal":{"name":"Internet of Things and Cyber-Physical Systems","volume":"2 ","pages":"Pages 82-90"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667345222000177/pdfft?md5=deb59d935cfaaa92d2189a5a303c9578&pid=1-s2.0-S2667345222000177-main.pdf","citationCount":"18","resultStr":"{\"title\":\"Sustainability 4.0 and its applications in the field of manufacturing\",\"authors\":\"Mohd Javaid , Abid Haleem , Ravi Pratap Singh , Shahbaz Khan , Rajiv Suman\",\"doi\":\"10.1016/j.iotcps.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainability 4.0 is being enabled through the effective adoption of modern technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Machine Vision (MV), Data Analytics (DA), Additive Manufacturing (AM) and other modern technologies. These technologies enable services at significantly lower prices due to the effective use of energy and resources with lesser wastage. Manufacturers are constantly looking for methods to lower the operating expenses associated with production processes. Manufacturers might optimise their value chain's production and associated processes by adopting sustainability 4.0 technologies. Such technologies will help manufacturers select their optimal facilities and employees, lower operational costs, enhance productivity and resource utilisation and provide a picture of process gaps that can be addressed. Sustainability is based on the effective use and reuse of resources across the product life cycle, from materials and processes to equipment and skills. Sustainable manufacturing produces manufactured goods using economically viable procedures that reduce negative environmental consequences while preserving energy and natural resources. This paper briefs Sustainability 4.0 and its significant needs. Various fundamental technologies and futuristic research aspects for Sustainability 4.0 are discussed diagrammatically. Finally, we identified and discussed significant applications of Sustainability 4.0 in manufacturing. Sustainability 4.0 refers to a long-term vision for enterprises that allows them to continue perpetually without depleting resources faster than they can be replaced. Sustainability 4.0 entails empowering prosumers to co-create to reshape the economy and society toward social inclusion and environmental sustainability. The use of sustainability and digitisation to solve environmental, social, and economic problems appears hopeful and exhausting.</p></div>\",\"PeriodicalId\":100724,\"journal\":{\"name\":\"Internet of Things and Cyber-Physical Systems\",\"volume\":\"2 \",\"pages\":\"Pages 82-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667345222000177/pdfft?md5=deb59d935cfaaa92d2189a5a303c9578&pid=1-s2.0-S2667345222000177-main.pdf\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things and Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667345222000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things and Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667345222000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainability 4.0 and its applications in the field of manufacturing
Sustainability 4.0 is being enabled through the effective adoption of modern technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Machine Vision (MV), Data Analytics (DA), Additive Manufacturing (AM) and other modern technologies. These technologies enable services at significantly lower prices due to the effective use of energy and resources with lesser wastage. Manufacturers are constantly looking for methods to lower the operating expenses associated with production processes. Manufacturers might optimise their value chain's production and associated processes by adopting sustainability 4.0 technologies. Such technologies will help manufacturers select their optimal facilities and employees, lower operational costs, enhance productivity and resource utilisation and provide a picture of process gaps that can be addressed. Sustainability is based on the effective use and reuse of resources across the product life cycle, from materials and processes to equipment and skills. Sustainable manufacturing produces manufactured goods using economically viable procedures that reduce negative environmental consequences while preserving energy and natural resources. This paper briefs Sustainability 4.0 and its significant needs. Various fundamental technologies and futuristic research aspects for Sustainability 4.0 are discussed diagrammatically. Finally, we identified and discussed significant applications of Sustainability 4.0 in manufacturing. Sustainability 4.0 refers to a long-term vision for enterprises that allows them to continue perpetually without depleting resources faster than they can be replaced. Sustainability 4.0 entails empowering prosumers to co-create to reshape the economy and society toward social inclusion and environmental sustainability. The use of sustainability and digitisation to solve environmental, social, and economic problems appears hopeful and exhausting.