Umi Kalsom Mohamad Yusof, S. Mashohor, M. Hanafi, S. Md Noor, Norsafina Zainal
{"title":"经典骨髓增殖性肿瘤的超分辨率增强骨髓Trephine图像分类","authors":"Umi Kalsom Mohamad Yusof, S. Mashohor, M. Hanafi, S. Md Noor, Norsafina Zainal","doi":"10.47836/pjst.31.5.02","DOIUrl":null,"url":null,"abstract":"Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"155 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Resolution Approach to Enhance Bone Marrow Trephine Image in the Classification of Classical Myeloproliferative Neoplasms\",\"authors\":\"Umi Kalsom Mohamad Yusof, S. Mashohor, M. Hanafi, S. Md Noor, Norsafina Zainal\",\"doi\":\"10.47836/pjst.31.5.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.31.5.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.5.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Super-Resolution Approach to Enhance Bone Marrow Trephine Image in the Classification of Classical Myeloproliferative Neoplasms
Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.