经典骨髓增殖性肿瘤的超分辨率增强骨髓Trephine图像分类

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Pertanika Journal of Science and Technology Pub Date : 2023-07-13 DOI:10.47836/pjst.31.5.02
Umi Kalsom Mohamad Yusof, S. Mashohor, M. Hanafi, S. Md Noor, Norsafina Zainal
{"title":"经典骨髓增殖性肿瘤的超分辨率增强骨髓Trephine图像分类","authors":"Umi Kalsom Mohamad Yusof, S. Mashohor, M. Hanafi, S. Md Noor, Norsafina Zainal","doi":"10.47836/pjst.31.5.02","DOIUrl":null,"url":null,"abstract":"Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"155 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Resolution Approach to Enhance Bone Marrow Trephine Image in the Classification of Classical Myeloproliferative Neoplasms\",\"authors\":\"Umi Kalsom Mohamad Yusof, S. Mashohor, M. Hanafi, S. Md Noor, Norsafina Zainal\",\"doi\":\"10.47836/pjst.31.5.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.31.5.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.5.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

许多疾病需要组织病理学图像来表征生物成分或研究细胞和组织结构。组织病理学图像在支持疾病分类中也是必不可少的,包括骨髓增生性肿瘤(MPN)。尽管在改进诊断工具方面取得了重大进展,但骨髓穿刺术(BMT)获得的组织病理学图像的形态学评估仍然是确认MPN亚型的关键。然而,由于其观察者之间的可变性,主观特征难以复制,因此评估结果具有挑战性。此外,图像处理可能会降低BMT图像的质量,影响诊断结果。本研究建立了典型MPN亚型的分类系统:真性红细胞增多症(PV)、原发性血小板增多症(ET)和原发性骨髓纤维化(MF)。利用超分辨率方法重建BMT的低分辨率图像来解决这一问题。利用超分辨率卷积神经网络(SRCNN)对拉普拉斯方差识别出的低分辨率图像进行重构,转化为信息丰富的高分辨率图像。将SRCNN数据集的原始BMT图像和重建BMT图像输入到CNN分类器中,并对两个数据集的分类器输出进行相应的比较。结果表明,由重建图像组成的数据集显示出更好的输出,准确率为92%,而对照图像的准确率为88%。总之,组织病理学图像的高质量对疾病过程分类有很大的影响,低分辨率图像的重建提高了分类输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-Resolution Approach to Enhance Bone Marrow Trephine Image in the Classification of Classical Myeloproliferative Neoplasms
Many diseases require histopathology images to characterise biological components or study cell and tissue architectures. The histopathology images are also essential in supporting disease classification, including myeloproliferative neoplasms (MPN). Despite significant developments to improve the diagnostic tools, morphological assessment from histopathology images obtained by bone marrow trephine (BMT) remains crucial to confirm MPN subtypes. However, the assessment outcome is challenging due to subjective characteristics that are hard to replicate due to its inter-observer variability. Apart from that, image processing may reduce the quality of the BMT images and affect the diagnosis result. This study has developed a classification system for classical MPN subtypes: polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). It was done by reconstructing low-resolution images of BMT using a super-resolution approach to address the issue. Identified low-resolution images from calculating Laplacian variance were reconstructed using a super-resolution convolution neural network (SRCNN) to transform into rich information of high-resolution images. Original BMT images and reconstructed BMT images using the SRCNN dataset were fed into a CNN classifier, and the classifier’s output for both datasets was compared accordingly. Based on the result, the dataset consisting of the reconstructed images showed better output with 92% accuracy, while the control images gave 88% accuracy. In conclusion, the high quality of histopathology images substantially impacts disease process classification, and the reconstruction of low-resolution images has improved the classification output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
期刊最新文献
Estimation of Leachate Volume and Treatment Cost Avoidance Through Waste Segregation Programme in Malaysia Understanding the Degradation of Carbofuran in Agricultural Area: A Review of Fate, Metabolites, and Toxicity Phenolics-Enhancing Piper sarmentosum (Roxburgh) Extracts Pre-Treated with Supercritical Carbon Dioxide and its Correlation with Cytotoxicity and α-Glucosidase Inhibitory Activities Comparison Using Intelligent Systems for Data Prediction and Near Miss Detection Techniques Investigation of Blended Seaweed Waste Recycling Using Black Soldier Fly Larvae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1