次优二次变化检测方案

I. Nikiforov
{"title":"次优二次变化检测方案","authors":"I. Nikiforov","doi":"10.1109/18.868480","DOIUrl":null,"url":null,"abstract":"We address the problem of detecting changes in multivariate Gaussian random signals with an unknown mean after the change. The window-limited generalized-likelihood ratio (GLR) scheme is a well-known approach to solve this problem. However, this algorithm involves at least (log /spl gamma/)//spl rho/ likelihood-ratio computations at each stage, where /spl gamma/(/spl gamma//spl rarr//spl infin/) is the mean time before a false alarm and /spl rho/ is the Kullback-Leibler information. We establish a new suboptimal recursive approach which is based on a collection of L parallel recursive /spl chi//sup 2/ tests instead of the window-limited GLR scheme. This new approach involves only a fixed number L of likelihood-ratio computations at each stage for any combinations of /spl gamma/ and /spl rho/. By choosing an acceptable value of nonoptimality, the designer can easily find a tradeoff between the complexity of the quadratic change detection algorithm and its efficiency.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"18 1","pages":"2095-2107"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A suboptimal quadratic change detection scheme\",\"authors\":\"I. Nikiforov\",\"doi\":\"10.1109/18.868480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of detecting changes in multivariate Gaussian random signals with an unknown mean after the change. The window-limited generalized-likelihood ratio (GLR) scheme is a well-known approach to solve this problem. However, this algorithm involves at least (log /spl gamma/)//spl rho/ likelihood-ratio computations at each stage, where /spl gamma/(/spl gamma//spl rarr//spl infin/) is the mean time before a false alarm and /spl rho/ is the Kullback-Leibler information. We establish a new suboptimal recursive approach which is based on a collection of L parallel recursive /spl chi//sup 2/ tests instead of the window-limited GLR scheme. This new approach involves only a fixed number L of likelihood-ratio computations at each stage for any combinations of /spl gamma/ and /spl rho/. By choosing an acceptable value of nonoptimality, the designer can easily find a tradeoff between the complexity of the quadratic change detection algorithm and its efficiency.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"18 1\",\"pages\":\"2095-2107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.868480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.868480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们解决了在变化后具有未知均值的多元高斯随机信号中检测变化的问题。窗限广义似然比(GLR)方案是解决这一问题的一种众所周知的方法。然而,该算法在每个阶段至少涉及(log /spl gamma/)//spl rho/似然比计算,其中/spl gamma/(/spl gamma//spl rarr//spl infin/)为误报警前的平均时间,/spl rho/为Kullback-Leibler信息。我们建立了一种新的次优递归方法,该方法是基于L个并行递归/spl chi//sup 2/测试的集合,而不是基于窗口限制的GLR方案。对于/spl gamma/和/spl rho/的任何组合,这种新方法在每个阶段只涉及固定数量L的似然比计算。通过选择一个可接受的非最优性值,设计人员可以很容易地在二次变化检测算法的复杂性和效率之间找到一个平衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A suboptimal quadratic change detection scheme
We address the problem of detecting changes in multivariate Gaussian random signals with an unknown mean after the change. The window-limited generalized-likelihood ratio (GLR) scheme is a well-known approach to solve this problem. However, this algorithm involves at least (log /spl gamma/)//spl rho/ likelihood-ratio computations at each stage, where /spl gamma/(/spl gamma//spl rarr//spl infin/) is the mean time before a false alarm and /spl rho/ is the Kullback-Leibler information. We establish a new suboptimal recursive approach which is based on a collection of L parallel recursive /spl chi//sup 2/ tests instead of the window-limited GLR scheme. This new approach involves only a fixed number L of likelihood-ratio computations at each stage for any combinations of /spl gamma/ and /spl rho/. By choosing an acceptable value of nonoptimality, the designer can easily find a tradeoff between the complexity of the quadratic change detection algorithm and its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to "On the Separability of Parallel MISO Broadcast Channels Under Partial CSIT: A Degrees of Freedom Region Perspective" Efficiently Decoding Reed-Muller Codes From Random Errors Restricted q-Isometry Properties Adapted to Frames for Nonconvex lq-Analysis Distortion Rate Function of Sub-Nyquist Sampled Gaussian Sources ℓp-Regularized Least Squares (0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1