RESLAM:实时鲁棒的基于边缘的SLAM系统

Fabian Schenk, F. Fraundorfer
{"title":"RESLAM:实时鲁棒的基于边缘的SLAM系统","authors":"Fabian Schenk, F. Fraundorfer","doi":"10.1109/ICRA.2019.8794462","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping is a key requirement for many practical applications in robotics. In this work, we present RESLAM, a novel edge-based SLAM system for RGBD sensors. Due to their sparse representation, larger convergence basin and stability under illumination changes, edges are a promising alternative to feature-based or other direct approaches. We build a complete SLAM pipeline with camera pose estimation, sliding window optimization, loop closure and relocalisation capabilities that utilizes edges throughout all steps. In our system, we additionally refine the initial depth from the sensor, the camera poses and the camera intrinsics in a sliding window to increase accuracy. Further, we introduce an edge-based verification for loop closures that can also be applied for relocalisation. We evaluate RESLAM on wide variety of benchmark datasets that include difficult scenes and camera motions and also present qualitative results. We show that this novel edge-based SLAM system performs comparable to state-of-the-art methods, while running in real-time on a CPU. RESLAM is available as open-source software1.1Code is available: https://github.com/fabianschenk/RESLAM","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"170 1","pages":"154-160"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"RESLAM: A real-time robust edge-based SLAM system\",\"authors\":\"Fabian Schenk, F. Fraundorfer\",\"doi\":\"10.1109/ICRA.2019.8794462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous Localization and Mapping is a key requirement for many practical applications in robotics. In this work, we present RESLAM, a novel edge-based SLAM system for RGBD sensors. Due to their sparse representation, larger convergence basin and stability under illumination changes, edges are a promising alternative to feature-based or other direct approaches. We build a complete SLAM pipeline with camera pose estimation, sliding window optimization, loop closure and relocalisation capabilities that utilizes edges throughout all steps. In our system, we additionally refine the initial depth from the sensor, the camera poses and the camera intrinsics in a sliding window to increase accuracy. Further, we introduce an edge-based verification for loop closures that can also be applied for relocalisation. We evaluate RESLAM on wide variety of benchmark datasets that include difficult scenes and camera motions and also present qualitative results. We show that this novel edge-based SLAM system performs comparable to state-of-the-art methods, while running in real-time on a CPU. RESLAM is available as open-source software1.1Code is available: https://github.com/fabianschenk/RESLAM\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"170 1\",\"pages\":\"154-160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8794462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

同时定位和绘图是机器人许多实际应用的关键要求。在这项工作中,我们提出了一种新的基于边缘的RGBD传感器SLAM系统RESLAM。由于它们的稀疏表示、更大的收敛盆地和光照变化下的稳定性,边缘是基于特征或其他直接方法的有希望的替代方法。我们建立了一个完整的SLAM管道,具有相机姿态估计,滑动窗口优化,闭环关闭和重新定位功能,在所有步骤中都利用边缘。在我们的系统中,我们还细化了传感器的初始深度,相机姿态和相机在滑动窗口中的固有特性,以提高精度。此外,我们为循环闭包引入了基于边缘的验证,该验证也可用于重新定位。我们在各种各样的基准数据集上评估RESLAM,包括困难的场景和相机运动,并给出定性结果。我们表明,这种新颖的基于边缘的SLAM系统在CPU上实时运行时,其性能可与最先进的方法相媲美。RESLAM作为开源软件提供1.1 code: https://github.com/fabianschenk/RESLAM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RESLAM: A real-time robust edge-based SLAM system
Simultaneous Localization and Mapping is a key requirement for many practical applications in robotics. In this work, we present RESLAM, a novel edge-based SLAM system for RGBD sensors. Due to their sparse representation, larger convergence basin and stability under illumination changes, edges are a promising alternative to feature-based or other direct approaches. We build a complete SLAM pipeline with camera pose estimation, sliding window optimization, loop closure and relocalisation capabilities that utilizes edges throughout all steps. In our system, we additionally refine the initial depth from the sensor, the camera poses and the camera intrinsics in a sliding window to increase accuracy. Further, we introduce an edge-based verification for loop closures that can also be applied for relocalisation. We evaluate RESLAM on wide variety of benchmark datasets that include difficult scenes and camera motions and also present qualitative results. We show that this novel edge-based SLAM system performs comparable to state-of-the-art methods, while running in real-time on a CPU. RESLAM is available as open-source software1.1Code is available: https://github.com/fabianschenk/RESLAM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1