基于卷积神经网络的手势解释控制系统

Benedikt Baldursson, Behnood Rasti, Karl S. Gudmundsson, D. Cojocaru, Kristinn Andersen, Saemundur E. Thorsteinsson
{"title":"基于卷积神经网络的手势解释控制系统","authors":"Benedikt Baldursson, Behnood Rasti, Karl S. Gudmundsson, D. Cojocaru, Kristinn Andersen, Saemundur E. Thorsteinsson","doi":"10.1109/BIA48344.2019.8967476","DOIUrl":null,"url":null,"abstract":"This paper proposes a non-invasive control system for electrical wheelchairs utilizing facial gestures of individuals captured by real-time monocular camera. The images are interpreted with a convolutional neural network that achieves up to ~99.5% overall accuracy. The control system uses an embedded system with a graphics processing unit for predicting real-time throughput with fast inference time. This solution offers great versatility, where the user can make a gesture to depict a command of his choice.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"43 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gesture Interpretation Control System Using Convolutional Neural Networks\",\"authors\":\"Benedikt Baldursson, Behnood Rasti, Karl S. Gudmundsson, D. Cojocaru, Kristinn Andersen, Saemundur E. Thorsteinsson\",\"doi\":\"10.1109/BIA48344.2019.8967476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a non-invasive control system for electrical wheelchairs utilizing facial gestures of individuals captured by real-time monocular camera. The images are interpreted with a convolutional neural network that achieves up to ~99.5% overall accuracy. The control system uses an embedded system with a graphics processing unit for predicting real-time throughput with fast inference time. This solution offers great versatility, where the user can make a gesture to depict a command of his choice.\",\"PeriodicalId\":6688,\"journal\":{\"name\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"volume\":\"43 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIA48344.2019.8967476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用实时单目摄像机捕捉到的个体面部动作的电动轮椅非侵入式控制系统。这些图像是用卷积神经网络解释的,总体准确率高达99.5%。控制系统采用带有图形处理单元的嵌入式系统,预测实时吞吐量,推理时间短。这个解决方案提供了很大的通用性,用户可以通过手势来描述他选择的命令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gesture Interpretation Control System Using Convolutional Neural Networks
This paper proposes a non-invasive control system for electrical wheelchairs utilizing facial gestures of individuals captured by real-time monocular camera. The images are interpreted with a convolutional neural network that achieves up to ~99.5% overall accuracy. The control system uses an embedded system with a graphics processing unit for predicting real-time throughput with fast inference time. This solution offers great versatility, where the user can make a gesture to depict a command of his choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CLAS: A Database for Cognitive Load, Affect and Stress Recognition Fucntional Modification of Upper Limb Prosthesis for Below Elbow Congential Deficiencies Application of Smart Contracts based on Ethereum Blockchain for the Purpose of Insurance Services Coping with missing data in an unobtrusive monitoring system for office workers An Approach to Improve Reliability of Vital Signs Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1