使用边界球和框的移动网络数据的等体积量化

Márton Kajó, B. Schultz, Janne Ali-Tolppa, G. Carle
{"title":"使用边界球和框的移动网络数据的等体积量化","authors":"Márton Kajó, B. Schultz, Janne Ali-Tolppa, G. Carle","doi":"10.1109/NOMS.2018.8406263","DOIUrl":null,"url":null,"abstract":"Mobile network management systems often utilize quantization algorithms for abstraction and simplification of information, to be later processed by human operators or automated functions. In use cases such as visualization of high dimensional data or processing of anomalous observations, the off- the-shelf algorithms might produce misleading results, without the user realizing that the problem lies in the choice of the applied method. In this paper, we provide a quantization algorithm called Bounding Sphere Quantization (BSQ) that performs better than standard approaches when applied to these use cases, by minimizing the maximum error in the quantization. Since the proposed algorithm is computationally expensive, we also explore an alternative approach, which approximates the results achieved by BSQ while greatly reducing computational complexity. Our evaluation shows that BSQ provides more intuitive results that work better for the selected use cases when compared to the well-known k-Means algorithm.","PeriodicalId":19331,"journal":{"name":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","volume":"124 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Equal-volume quantization of mobile network data using bounding spheres and boxes\",\"authors\":\"Márton Kajó, B. Schultz, Janne Ali-Tolppa, G. Carle\",\"doi\":\"10.1109/NOMS.2018.8406263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile network management systems often utilize quantization algorithms for abstraction and simplification of information, to be later processed by human operators or automated functions. In use cases such as visualization of high dimensional data or processing of anomalous observations, the off- the-shelf algorithms might produce misleading results, without the user realizing that the problem lies in the choice of the applied method. In this paper, we provide a quantization algorithm called Bounding Sphere Quantization (BSQ) that performs better than standard approaches when applied to these use cases, by minimizing the maximum error in the quantization. Since the proposed algorithm is computationally expensive, we also explore an alternative approach, which approximates the results achieved by BSQ while greatly reducing computational complexity. Our evaluation shows that BSQ provides more intuitive results that work better for the selected use cases when compared to the well-known k-Means algorithm.\",\"PeriodicalId\":19331,\"journal\":{\"name\":\"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"124 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2018.8406263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2018.8406263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

移动网络管理系统通常利用量化算法对信息进行抽象和简化,然后由人工操作员或自动化功能进行处理。在高维数据的可视化或异常观测的处理等用例中,现成的算法可能会产生误导性的结果,而用户却没有意识到问题在于应用方法的选择。在本文中,我们提供了一种称为边界球量化(BSQ)的量化算法,该算法通过最小化量化中的最大误差,在应用于这些用例时比标准方法表现得更好。由于所提出的算法计算成本高,我们还探索了一种替代方法,该方法近似于BSQ获得的结果,同时大大降低了计算复杂度。我们的评估表明,与众所周知的k-Means算法相比,BSQ提供了更直观的结果,更适合所选的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Equal-volume quantization of mobile network data using bounding spheres and boxes
Mobile network management systems often utilize quantization algorithms for abstraction and simplification of information, to be later processed by human operators or automated functions. In use cases such as visualization of high dimensional data or processing of anomalous observations, the off- the-shelf algorithms might produce misleading results, without the user realizing that the problem lies in the choice of the applied method. In this paper, we provide a quantization algorithm called Bounding Sphere Quantization (BSQ) that performs better than standard approaches when applied to these use cases, by minimizing the maximum error in the quantization. Since the proposed algorithm is computationally expensive, we also explore an alternative approach, which approximates the results achieved by BSQ while greatly reducing computational complexity. Our evaluation shows that BSQ provides more intuitive results that work better for the selected use cases when compared to the well-known k-Means algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SSH Kernel: A Jupyter Extension Specifically for Remote Infrastructure Administration Visual emulation for Ethereum's virtual machine Analyzing throughput and stability in cellular networks Network events in a large commercial network: What can we learn? Economic incentives on DNSSEC deployment: Time to move from quantity to quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1