{"title":"考虑区域空隙置换率的大油田开发优化","authors":"Najoud Hassan BaniHammad, Rachit Kedia, Jawaher Alsabeai","doi":"10.2118/196630-ms","DOIUrl":null,"url":null,"abstract":"\n Net present value (NPV) and voidage replacement ratio (VRR) are the key drivers to define an optimal reservoir development strategy that maximizes returns while maintaining reservoir health. In the subsurface context, maximizing NPV consists of optimizing the well locations. Voidage replacement ratio (VRR), which is defined as the ratio between the volume of injected fluid and the volume of produced fluid, measures the rate of change in reservoir energy. Conventionally, operators try to maintain a VRR close to one during the whole field life. Typically a single value of VRR is used as a metric to represent the whole reservoir. However, this approach does not capture the lateral variation in pressure seen in giant fields.\n This paper focuses on a more suitable method for determining the VRR for each user-defined pressure region using reservoir simulation. This method is used to plan the location of future wells during the long term development plan and maximize NPV and recovery. Two scenarios of well location will be examined. The first scenario consists of optimizing well location using a single VRR metric for the whole field. The second scenario uses the VRR from each pressure region to decide on the optimum number of wells per region.\n This latter approach is shown to give better results in planning well location for future field development and is consistent with the reservoir pressure distribution across the field.","PeriodicalId":11098,"journal":{"name":"Day 2 Wed, September 18, 2019","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant Field Development Optimisation with the Consideration of Regional Voidage Replacement Ratio\",\"authors\":\"Najoud Hassan BaniHammad, Rachit Kedia, Jawaher Alsabeai\",\"doi\":\"10.2118/196630-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Net present value (NPV) and voidage replacement ratio (VRR) are the key drivers to define an optimal reservoir development strategy that maximizes returns while maintaining reservoir health. In the subsurface context, maximizing NPV consists of optimizing the well locations. Voidage replacement ratio (VRR), which is defined as the ratio between the volume of injected fluid and the volume of produced fluid, measures the rate of change in reservoir energy. Conventionally, operators try to maintain a VRR close to one during the whole field life. Typically a single value of VRR is used as a metric to represent the whole reservoir. However, this approach does not capture the lateral variation in pressure seen in giant fields.\\n This paper focuses on a more suitable method for determining the VRR for each user-defined pressure region using reservoir simulation. This method is used to plan the location of future wells during the long term development plan and maximize NPV and recovery. Two scenarios of well location will be examined. The first scenario consists of optimizing well location using a single VRR metric for the whole field. The second scenario uses the VRR from each pressure region to decide on the optimum number of wells per region.\\n This latter approach is shown to give better results in planning well location for future field development and is consistent with the reservoir pressure distribution across the field.\",\"PeriodicalId\":11098,\"journal\":{\"name\":\"Day 2 Wed, September 18, 2019\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 18, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196630-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 18, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196630-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Giant Field Development Optimisation with the Consideration of Regional Voidage Replacement Ratio
Net present value (NPV) and voidage replacement ratio (VRR) are the key drivers to define an optimal reservoir development strategy that maximizes returns while maintaining reservoir health. In the subsurface context, maximizing NPV consists of optimizing the well locations. Voidage replacement ratio (VRR), which is defined as the ratio between the volume of injected fluid and the volume of produced fluid, measures the rate of change in reservoir energy. Conventionally, operators try to maintain a VRR close to one during the whole field life. Typically a single value of VRR is used as a metric to represent the whole reservoir. However, this approach does not capture the lateral variation in pressure seen in giant fields.
This paper focuses on a more suitable method for determining the VRR for each user-defined pressure region using reservoir simulation. This method is used to plan the location of future wells during the long term development plan and maximize NPV and recovery. Two scenarios of well location will be examined. The first scenario consists of optimizing well location using a single VRR metric for the whole field. The second scenario uses the VRR from each pressure region to decide on the optimum number of wells per region.
This latter approach is shown to give better results in planning well location for future field development and is consistent with the reservoir pressure distribution across the field.