区间不确定性下数据拟合问题的弱与强兼容性

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2020-01-01 DOI:10.1142/s2424922x20500023
S. P. Shary
{"title":"区间不确定性下数据拟合问题的弱与强兼容性","authors":"S. P. Shary","doi":"10.1142/s2424922x20500023","DOIUrl":null,"url":null,"abstract":"For the data fitting problem under interval uncertainty, we introduce the concept of strong compatibility between data and parameters. It is shown that the new strengthened formulation of the problem reduces to computing and estimating the so-called tolerable solution set for interval systems of equations constructed from the data being processed. We propose a computational technology for constructing a “best-fit” linear function from interval data, taking into account the strong compatibility requirement. The properties of the new data fitting approach are much better than those of its predecessors: strong compatibility estimates have polynomial computational complexity, the variance of the strong compatibility estimates is almost always finite, and these estimates are rubust. An example considered in the concluding part of the paper illustrates some of these features.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"29 1","pages":"2050002:1-2050002:34"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weak and Strong Compatibility in Data Fitting Problems Under Interval Uncertainty\",\"authors\":\"S. P. Shary\",\"doi\":\"10.1142/s2424922x20500023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the data fitting problem under interval uncertainty, we introduce the concept of strong compatibility between data and parameters. It is shown that the new strengthened formulation of the problem reduces to computing and estimating the so-called tolerable solution set for interval systems of equations constructed from the data being processed. We propose a computational technology for constructing a “best-fit” linear function from interval data, taking into account the strong compatibility requirement. The properties of the new data fitting approach are much better than those of its predecessors: strong compatibility estimates have polynomial computational complexity, the variance of the strong compatibility estimates is almost always finite, and these estimates are rubust. An example considered in the concluding part of the paper illustrates some of these features.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"29 1\",\"pages\":\"2050002:1-2050002:34\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424922x20500023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424922x20500023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

摘要

对于区间不确定条件下的数据拟合问题,引入了数据与参数强相容的概念。结果表明,该问题的新强化形式简化为计算和估计由所处理的数据构成的区间方程组的所谓可容忍解集。我们提出了一种从区间数据构造“最佳拟合”线性函数的计算技术,考虑到强兼容性要求。新的数据拟合方法比以前的方法具有更好的特性:强兼容性估计具有多项式的计算复杂度,强兼容性估计的方差几乎总是有限的,并且这些估计具有鲁棒性。本文最后的一个例子说明了其中的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak and Strong Compatibility in Data Fitting Problems Under Interval Uncertainty
For the data fitting problem under interval uncertainty, we introduce the concept of strong compatibility between data and parameters. It is shown that the new strengthened formulation of the problem reduces to computing and estimating the so-called tolerable solution set for interval systems of equations constructed from the data being processed. We propose a computational technology for constructing a “best-fit” linear function from interval data, taking into account the strong compatibility requirement. The properties of the new data fitting approach are much better than those of its predecessors: strong compatibility estimates have polynomial computational complexity, the variance of the strong compatibility estimates is almost always finite, and these estimates are rubust. An example considered in the concluding part of the paper illustrates some of these features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1