SECA:泛在微学习环境中的反馈规则模型

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460745
M. S. Tabares, Paola Vallejo-Correa, Alex Montoya, Jose D. Sanchez, Daniel Correa
{"title":"SECA:泛在微学习环境中的反馈规则模型","authors":"M. S. Tabares, Paola Vallejo-Correa, Alex Montoya, Jose D. Sanchez, Daniel Correa","doi":"10.1145/3460620.3460745","DOIUrl":null,"url":null,"abstract":"Understanding learner behavior is the key to the success of any learning process. The more we know about learners, the more likely we are to personalize learning experiences and provide successful feedback. This paper presents a feedback rules model called SECA: (i) Scenario, that defines the context behavior in a microlearning environment, (ii) Event, provided by a predictive model, (iii) Condition, that evaluates the events, and (iv) Action, that provides the learner’s feedback. The proposal is achieved through a controlled experiment in which a microlearning environment is available to collect data from a ubiquitous context, and predictive analytics are applied to guide the definition of a set of feedback rules intended to support the learner’s learning process. In the end, we presented an exemplified set of feedback rules, which could be used to provide automatic recommendations and improve the learner experience. Thus, the experiment allows us to analyze the learner behavior in a ubiquitous microlearning context from a feedback perspective.","PeriodicalId":36824,"journal":{"name":"Data","volume":"31 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SECA: A Feedback Rules Model in a Ubiquitous Microlearning Context\",\"authors\":\"M. S. Tabares, Paola Vallejo-Correa, Alex Montoya, Jose D. Sanchez, Daniel Correa\",\"doi\":\"10.1145/3460620.3460745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding learner behavior is the key to the success of any learning process. The more we know about learners, the more likely we are to personalize learning experiences and provide successful feedback. This paper presents a feedback rules model called SECA: (i) Scenario, that defines the context behavior in a microlearning environment, (ii) Event, provided by a predictive model, (iii) Condition, that evaluates the events, and (iv) Action, that provides the learner’s feedback. The proposal is achieved through a controlled experiment in which a microlearning environment is available to collect data from a ubiquitous context, and predictive analytics are applied to guide the definition of a set of feedback rules intended to support the learner’s learning process. In the end, we presented an exemplified set of feedback rules, which could be used to provide automatic recommendations and improve the learner experience. Thus, the experiment allows us to analyze the learner behavior in a ubiquitous microlearning context from a feedback perspective.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1145/3460620.3460745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

理解学习者的行为是任何学习过程成功的关键。我们对学习者了解得越多,我们就越有可能个性化学习体验并提供成功的反馈。本文提出了一个名为SECA的反馈规则模型:(i)场景,它定义了微学习环境中的上下文行为;(ii)事件,由预测模型提供;(iii)条件,评估事件;(iv)行动,提供学习者的反馈。该建议是通过一个控制实验来实现的,在这个实验中,微学习环境可以从无处不在的环境中收集数据,并应用预测分析来指导一组旨在支持学习者学习过程的反馈规则的定义。最后,我们给出了一组反馈规则的示例,这些规则可用于提供自动推荐并改善学习者的体验。因此,该实验使我们能够从反馈的角度分析无处不在的微学习环境中的学习者行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SECA: A Feedback Rules Model in a Ubiquitous Microlearning Context
Understanding learner behavior is the key to the success of any learning process. The more we know about learners, the more likely we are to personalize learning experiences and provide successful feedback. This paper presents a feedback rules model called SECA: (i) Scenario, that defines the context behavior in a microlearning environment, (ii) Event, provided by a predictive model, (iii) Condition, that evaluates the events, and (iv) Action, that provides the learner’s feedback. The proposal is achieved through a controlled experiment in which a microlearning environment is available to collect data from a ubiquitous context, and predictive analytics are applied to guide the definition of a set of feedback rules intended to support the learner’s learning process. In the end, we presented an exemplified set of feedback rules, which could be used to provide automatic recommendations and improve the learner experience. Thus, the experiment allows us to analyze the learner behavior in a ubiquitous microlearning context from a feedback perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1