油茶振动采摘机械手的模糊神经网络PID控制设计

IF 2.4 4区 农林科学 Q2 AGRICULTURAL ENGINEERING Journal of Agricultural Engineering Pub Date : 2023-08-01 DOI:10.4081/jae.2023.1466
Ziyan Fan, Lijun Li, Zicheng Gao
{"title":"油茶振动采摘机械手的模糊神经网络PID控制设计","authors":"Ziyan Fan, Lijun Li, Zicheng Gao","doi":"10.4081/jae.2023.1466","DOIUrl":null,"url":null,"abstract":"Due to the growth characteristics of the flowers and fruits of camellia in the same period, the vibrating camellia fruit picking machine needs to ensure the constant rotational speed of the vibrating hydraulic motor when the picking mechanism is operating, to achieve a constant vibration frequency, to ensure that the camellia fruit can smoothly fall off the branches through vibration. In contrast, the camellia fruit does not fall off. In this regard, this paper deduced the state space equation of the camellia fruit picking machine’s valve-controlled vibrating hydraulic motor system and designed a fuzzy wavelet neural network PID controller (FWNN PID controller) based on the traditional incremental PID control principle. Then the designed vibration picking manipulator control system was simulated under no-load, 5 s load conditions, and load start conditions with MATLAB/Simulink, a general PID controller and a fuzzy RBF neural network PID controller (FRBFNN PID controller) were used to contrast with it. The results show that the general PID controller has a slow response speed and poor robustness, while fuzzy neural network PID controllers (including FWNN PID controller and FRBFNN PID controller) have a fast response speed and strong robustness, which can well meet the requirements of a specific vibration frequency. Finally, a field test was carried out. The results show that the FWNN PID control is better than the FRBFNN PID control. Furthermore, the FWNN PID controller obviously reduced the drop rate of camellia flowers within 6% while ensuring the picking efficiency above 90%, which can well meet the needs of the camellia fruit picking operation.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy neural network PID control design of camellia fruit vibration picking manipulator\",\"authors\":\"Ziyan Fan, Lijun Li, Zicheng Gao\",\"doi\":\"10.4081/jae.2023.1466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the growth characteristics of the flowers and fruits of camellia in the same period, the vibrating camellia fruit picking machine needs to ensure the constant rotational speed of the vibrating hydraulic motor when the picking mechanism is operating, to achieve a constant vibration frequency, to ensure that the camellia fruit can smoothly fall off the branches through vibration. In contrast, the camellia fruit does not fall off. In this regard, this paper deduced the state space equation of the camellia fruit picking machine’s valve-controlled vibrating hydraulic motor system and designed a fuzzy wavelet neural network PID controller (FWNN PID controller) based on the traditional incremental PID control principle. Then the designed vibration picking manipulator control system was simulated under no-load, 5 s load conditions, and load start conditions with MATLAB/Simulink, a general PID controller and a fuzzy RBF neural network PID controller (FRBFNN PID controller) were used to contrast with it. The results show that the general PID controller has a slow response speed and poor robustness, while fuzzy neural network PID controllers (including FWNN PID controller and FRBFNN PID controller) have a fast response speed and strong robustness, which can well meet the requirements of a specific vibration frequency. Finally, a field test was carried out. The results show that the FWNN PID control is better than the FRBFNN PID control. Furthermore, the FWNN PID controller obviously reduced the drop rate of camellia flowers within 6% while ensuring the picking efficiency above 90%, which can well meet the needs of the camellia fruit picking operation.\",\"PeriodicalId\":48507,\"journal\":{\"name\":\"Journal of Agricultural Engineering\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4081/jae.2023.1466\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/jae.2023.1466","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

由于茶花和果实在同一时期的生长特点,振动式茶花果实采摘机在采摘机构工作时需要保证振动液压马达的恒定转速,达到恒定的振动频率,保证茶花果实通过振动顺利地从树枝上掉落。相比之下,山茶花的果实不会脱落。为此,本文推导了油茶采摘机阀控振动液压马达系统的状态空间方程,并在传统增量式PID控制原理的基础上设计了模糊小波神经网络PID控制器(FWNN PID控制器)。然后利用MATLAB/Simulink对所设计的振动拾取机械手控制系统在空载、5 s负载和负载启动条件下进行仿真,并采用通用PID控制器和模糊RBF神经网络PID控制器(FRBFNN PID控制器)与之进行对比。结果表明,一般PID控制器响应速度慢,鲁棒性差,而模糊神经网络PID控制器(包括FWNN PID控制器和FRBFNN PID控制器)响应速度快,鲁棒性强,能很好地满足特定振动频率的要求。最后进行了现场试验。结果表明,FWNN PID控制优于FRBFNN PID控制。此外,采用FWNN PID控制器,在保证采摘效率90%以上的同时,将茶花的掉落率明显降低到6%以内,可以很好地满足茶花采摘作业的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy neural network PID control design of camellia fruit vibration picking manipulator
Due to the growth characteristics of the flowers and fruits of camellia in the same period, the vibrating camellia fruit picking machine needs to ensure the constant rotational speed of the vibrating hydraulic motor when the picking mechanism is operating, to achieve a constant vibration frequency, to ensure that the camellia fruit can smoothly fall off the branches through vibration. In contrast, the camellia fruit does not fall off. In this regard, this paper deduced the state space equation of the camellia fruit picking machine’s valve-controlled vibrating hydraulic motor system and designed a fuzzy wavelet neural network PID controller (FWNN PID controller) based on the traditional incremental PID control principle. Then the designed vibration picking manipulator control system was simulated under no-load, 5 s load conditions, and load start conditions with MATLAB/Simulink, a general PID controller and a fuzzy RBF neural network PID controller (FRBFNN PID controller) were used to contrast with it. The results show that the general PID controller has a slow response speed and poor robustness, while fuzzy neural network PID controllers (including FWNN PID controller and FRBFNN PID controller) have a fast response speed and strong robustness, which can well meet the requirements of a specific vibration frequency. Finally, a field test was carried out. The results show that the FWNN PID control is better than the FRBFNN PID control. Furthermore, the FWNN PID controller obviously reduced the drop rate of camellia flowers within 6% while ensuring the picking efficiency above 90%, which can well meet the needs of the camellia fruit picking operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Engineering
Journal of Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
2.30
自引率
5.60%
发文量
40
审稿时长
10 weeks
期刊介绍: The Journal of Agricultural Engineering (JAE) is the official journal of the Italian Society of Agricultural Engineering supported by University of Bologna, Italy. The subject matter covers a complete and interdisciplinary range of research in engineering for agriculture and biosystems.
期刊最新文献
Comparison of two different artificial neural network models for prediction of soil penetration resistance Apple recognition and picking sequence planning for harvesting robot in the complex environment Monitoring and multi-scenario simulation of agricultural land changes using Landsat imageries and FLUS model on coastal Alanya Variable-rate spray system for unmanned aerial applications using lag compensation algorithm and pulse width modulation spray technology Comparative analysis of 2D and 3D vineyard yield prediction system using artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1