Muhammad Younis Khan, G. Xue, Weiying Chen, C. Boateng
{"title":"利用岩石物理测井和短偏移瞬变电磁(SOTEM)资料研究地下水突水带","authors":"Muhammad Younis Khan, G. Xue, Weiying Chen, C. Boateng","doi":"10.32389/jeeg18-111","DOIUrl":null,"url":null,"abstract":"The water burst from the Ordovician limestone underlain by the Permo-Carboniferous coal seams have potential to trigger coalmine hazards in Northern China. Therefore, it is crucial to identify and accurately map the water enrichment zones and delineate coal seams using an integrated approach based on surface TEM and subsurface wireline log information to avoid water-inrush hazard and ensure safe production of coal. We inverted surface based TEM data using 1-D Occam inversion to identify the conductive anomaly and then further quantified the zone of interest by gamma and resistivity logs. 1-D Occam inversion results show conductive zone around 370 m while higher resistivity and lower gamma ray log signatures were observed against coal seams. Groundwater inrush zone falls within the mid-range gamma ray and resistivity interval as shown on the petrophysical logs. The distinct log signatures (low gamma-ray and high resistivity values) clearly indicated coal seams at depth of 410 and 470 m and subsequently the log trends were used to distinguish between coal units and more permeable sands. The magnitude and the variability of these parameters in the borehole are attributed to the subsurface stratigraphic heterogeneity. They can be key clues for interpretation of depositional facies of coal-bearing sequence and may also be used as a constraint in characterization of groundwater enrichment zone.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"31 1","pages":"433-437"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Investigation of Groundwater In-rush Zone using Petrophysical Logs and Short-offset Transient Electromagnetic (SOTEM) Data\",\"authors\":\"Muhammad Younis Khan, G. Xue, Weiying Chen, C. Boateng\",\"doi\":\"10.32389/jeeg18-111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The water burst from the Ordovician limestone underlain by the Permo-Carboniferous coal seams have potential to trigger coalmine hazards in Northern China. Therefore, it is crucial to identify and accurately map the water enrichment zones and delineate coal seams using an integrated approach based on surface TEM and subsurface wireline log information to avoid water-inrush hazard and ensure safe production of coal. We inverted surface based TEM data using 1-D Occam inversion to identify the conductive anomaly and then further quantified the zone of interest by gamma and resistivity logs. 1-D Occam inversion results show conductive zone around 370 m while higher resistivity and lower gamma ray log signatures were observed against coal seams. Groundwater inrush zone falls within the mid-range gamma ray and resistivity interval as shown on the petrophysical logs. The distinct log signatures (low gamma-ray and high resistivity values) clearly indicated coal seams at depth of 410 and 470 m and subsequently the log trends were used to distinguish between coal units and more permeable sands. The magnitude and the variability of these parameters in the borehole are attributed to the subsurface stratigraphic heterogeneity. They can be key clues for interpretation of depositional facies of coal-bearing sequence and may also be used as a constraint in characterization of groundwater enrichment zone.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"31 1\",\"pages\":\"433-437\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg18-111\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg18-111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Investigation of Groundwater In-rush Zone using Petrophysical Logs and Short-offset Transient Electromagnetic (SOTEM) Data
The water burst from the Ordovician limestone underlain by the Permo-Carboniferous coal seams have potential to trigger coalmine hazards in Northern China. Therefore, it is crucial to identify and accurately map the water enrichment zones and delineate coal seams using an integrated approach based on surface TEM and subsurface wireline log information to avoid water-inrush hazard and ensure safe production of coal. We inverted surface based TEM data using 1-D Occam inversion to identify the conductive anomaly and then further quantified the zone of interest by gamma and resistivity logs. 1-D Occam inversion results show conductive zone around 370 m while higher resistivity and lower gamma ray log signatures were observed against coal seams. Groundwater inrush zone falls within the mid-range gamma ray and resistivity interval as shown on the petrophysical logs. The distinct log signatures (low gamma-ray and high resistivity values) clearly indicated coal seams at depth of 410 and 470 m and subsequently the log trends were used to distinguish between coal units and more permeable sands. The magnitude and the variability of these parameters in the borehole are attributed to the subsurface stratigraphic heterogeneity. They can be key clues for interpretation of depositional facies of coal-bearing sequence and may also be used as a constraint in characterization of groundwater enrichment zone.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.