空气中纳秒引脚板放电产生生物活性氮氧化物

Q1 Medicine Clinical Plasma Medicine Pub Date : 2018-02-01 DOI:10.1016/j.cpme.2017.12.064
Xuekai Pei, Dogan Gidon, David B. Graves
{"title":"空气中纳秒引脚板放电产生生物活性氮氧化物","authors":"Xuekai Pei,&nbsp;Dogan Gidon,&nbsp;David B. Graves","doi":"10.1016/j.cpme.2017.12.064","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric pressure air plasma discharges can generate abundance of biologically actives such as nitrogen oxides NO<sub>x</sub> (NO, NO<sub>2</sub> etc) which are known as very important reactive oxygen and nitrogen species (RONS) in biomedical applications.[1-2] In this work, we focus on the study of NO<sub>x</sub> synthesis by nanosecond pin-plate discharge in atmospheric pressure air. The fourier transform infrared (FTIR) spectrum shows the primary species produced by this discharge only include NO<sub>,</sub> NO<sub>2</sub>, and HONO. The energy costs of NO<sub>x</sub> production decrease with increasing pulse width (in the range of 100ns to 260ns) from ~2400 GJ/tN (gigajoules per metric ton) to ~1000 GJ/tN. Detailed investigation of power consumption and NO<sub>x</sub> production throughout the pulse gives hints regarding the mechanisms of efficient NO<sub>x</sub> synthesis, namely that the initial and inefficient breakdown process is the main sink of energy. We show late-pulse, 2 mm gap NO<sub>x</sub> production energy cost may be as low as ~ 300 GJ/tN(~1.4 x 10<sup>17</sup> molecules/J)which is something similar with gliding arc discharge results [3]. A simple 0D post-discharge kinetic model is able to reproduce the experimentally observed trends, assuming the main driver for NO<sub>x</sub> production is electronically excited nitrogen species N2,e*. The model implies an initial increasing trend for efficiency with increased N2,e* concentration which may explain the increase in efficiency we observe with increasing pulse width.</p></div>","PeriodicalId":46325,"journal":{"name":"Clinical Plasma Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpme.2017.12.064","citationCount":"2","resultStr":"{\"title\":\"Biologically Active NOx Production By Nano-Second Pin-Plate Discharge In Air\",\"authors\":\"Xuekai Pei,&nbsp;Dogan Gidon,&nbsp;David B. Graves\",\"doi\":\"10.1016/j.cpme.2017.12.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atmospheric pressure air plasma discharges can generate abundance of biologically actives such as nitrogen oxides NO<sub>x</sub> (NO, NO<sub>2</sub> etc) which are known as very important reactive oxygen and nitrogen species (RONS) in biomedical applications.[1-2] In this work, we focus on the study of NO<sub>x</sub> synthesis by nanosecond pin-plate discharge in atmospheric pressure air. The fourier transform infrared (FTIR) spectrum shows the primary species produced by this discharge only include NO<sub>,</sub> NO<sub>2</sub>, and HONO. The energy costs of NO<sub>x</sub> production decrease with increasing pulse width (in the range of 100ns to 260ns) from ~2400 GJ/tN (gigajoules per metric ton) to ~1000 GJ/tN. Detailed investigation of power consumption and NO<sub>x</sub> production throughout the pulse gives hints regarding the mechanisms of efficient NO<sub>x</sub> synthesis, namely that the initial and inefficient breakdown process is the main sink of energy. We show late-pulse, 2 mm gap NO<sub>x</sub> production energy cost may be as low as ~ 300 GJ/tN(~1.4 x 10<sup>17</sup> molecules/J)which is something similar with gliding arc discharge results [3]. A simple 0D post-discharge kinetic model is able to reproduce the experimentally observed trends, assuming the main driver for NO<sub>x</sub> production is electronically excited nitrogen species N2,e*. The model implies an initial increasing trend for efficiency with increased N2,e* concentration which may explain the increase in efficiency we observe with increasing pulse width.</p></div>\",\"PeriodicalId\":46325,\"journal\":{\"name\":\"Clinical Plasma Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cpme.2017.12.064\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Plasma Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212816617300896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212816617300896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

常压空气等离子体放电可以产生大量的生物活性物质,如氮氧化物NOx (NO, NO2等),这些生物活性物质在生物医学应用中被称为非常重要的活性氧和氮种(RONS)。[1-2]本文主要研究了常压空气中纳秒针板放电合成NOx的方法。傅里叶变换红外(FTIR)光谱显示,该放电产生的主要物质仅包括NO、NO2和HONO。随着脉冲宽度(在100ns到260ns范围内)从~2400 GJ/tN(每公吨十亿焦耳)增加到~1000 GJ/tN, NOx生产的能源成本降低。对整个脉冲过程中功率消耗和氮氧化物产生的详细研究提示了高效氮氧化物合成的机制,即初始和低效的分解过程是能量的主要汇。我们发现,脉冲后,2mm间隙产生NOx的能量成本可能低至~ 300 GJ/tN(~1.4 x 1017分子/J),这与滑动电弧放电结果相似[3]。假设NOx生成的主要驱动因素是电子激发的氮种N2,e*,一个简单的0D放电后动力学模型能够再现实验观察到的趋势。该模型表明,随着N2,e*浓度的增加,效率有初始增加的趋势,这可以解释我们观察到的随着脉冲宽度的增加效率的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biologically Active NOx Production By Nano-Second Pin-Plate Discharge In Air

Atmospheric pressure air plasma discharges can generate abundance of biologically actives such as nitrogen oxides NOx (NO, NO2 etc) which are known as very important reactive oxygen and nitrogen species (RONS) in biomedical applications.[1-2] In this work, we focus on the study of NOx synthesis by nanosecond pin-plate discharge in atmospheric pressure air. The fourier transform infrared (FTIR) spectrum shows the primary species produced by this discharge only include NO, NO2, and HONO. The energy costs of NOx production decrease with increasing pulse width (in the range of 100ns to 260ns) from ~2400 GJ/tN (gigajoules per metric ton) to ~1000 GJ/tN. Detailed investigation of power consumption and NOx production throughout the pulse gives hints regarding the mechanisms of efficient NOx synthesis, namely that the initial and inefficient breakdown process is the main sink of energy. We show late-pulse, 2 mm gap NOx production energy cost may be as low as ~ 300 GJ/tN(~1.4 x 1017 molecules/J)which is something similar with gliding arc discharge results [3]. A simple 0D post-discharge kinetic model is able to reproduce the experimentally observed trends, assuming the main driver for NOx production is electronically excited nitrogen species N2,e*. The model implies an initial increasing trend for efficiency with increased N2,e* concentration which may explain the increase in efficiency we observe with increasing pulse width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Plasma Medicine
Clinical Plasma Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
0
期刊最新文献
Changes in enamel after bleaching pre-treatment with non-thermal atmospheric plasma Increasing the effectivity of the antimicrobial surface of carbon quantum dots-based nanocomposite by atmospheric pressure plasma Cold atmospheric plasma treatment on failed finger perforator flap: A case report Canady cold plasma conversion system treatment: An effective inhibitor of cell viability in breast cancer molecular subtypes A comparison of two cold atmospheric helium plasma devices which utilise the same RF power generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1