基于多焦点模式投影的投影仪离焦深度

H. Masuyama, Hiroshi Kawasaki, Furukawa Ryo
{"title":"基于多焦点模式投影的投影仪离焦深度","authors":"H. Masuyama, Hiroshi Kawasaki, Furukawa Ryo","doi":"10.2197/ipsjtcva.6.88","DOIUrl":null,"url":null,"abstract":"For 3D active measurement methods using video projector, there is the implicit limitation that the projected patterns must be in focus on the target object. Such limitation set a severe constraints on possible range of the depth for reconstruction. In order to overcome the problem, Depth from Defocus (DfD) method using multiple patterns with different in-focus depth is proposed to expand the depth range in the paper. With the method, not only the range of the depth is extended, but also the shape can be recovered even if there is an obstacle between the projector and the target, because of the large aperture of the projector. Furthermore, thanks to the advantage of DfD which does not require baseline between the cameras and the projector, occlusion does not occur with the method. In order to verify the effectiveness of the method, several experiments using the actual system was conducted to estimate the depth of several objects.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"175 1","pages":"88-92"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Depth from Projector's Defocus Based on Multiple Focus Pattern Projection\",\"authors\":\"H. Masuyama, Hiroshi Kawasaki, Furukawa Ryo\",\"doi\":\"10.2197/ipsjtcva.6.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For 3D active measurement methods using video projector, there is the implicit limitation that the projected patterns must be in focus on the target object. Such limitation set a severe constraints on possible range of the depth for reconstruction. In order to overcome the problem, Depth from Defocus (DfD) method using multiple patterns with different in-focus depth is proposed to expand the depth range in the paper. With the method, not only the range of the depth is extended, but also the shape can be recovered even if there is an obstacle between the projector and the target, because of the large aperture of the projector. Furthermore, thanks to the advantage of DfD which does not require baseline between the cameras and the projector, occlusion does not occur with the method. In order to verify the effectiveness of the method, several experiments using the actual system was conducted to estimate the depth of several objects.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"175 1\",\"pages\":\"88-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.6.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.6.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10

摘要

对于使用视频投影仪的三维主动测量方法,有一个隐含的限制,即投影图案必须聚焦在目标物体上。这种限制严重限制了重建的可能深度范围。为了克服这一问题,本文提出了使用不同焦内深度的多模式离焦深度(DfD)方法来扩大深度范围。利用该方法,由于投影仪的大孔径,不仅扩大了深度范围,而且即使在投影仪和目标之间有障碍物的情况下,也可以恢复形状。此外,由于DfD的优点,它不需要相机和投影仪之间的基线,遮挡不会发生与该方法。为了验证该方法的有效性,利用实际系统进行了多个目标深度估计实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depth from Projector's Defocus Based on Multiple Focus Pattern Projection
For 3D active measurement methods using video projector, there is the implicit limitation that the projected patterns must be in focus on the target object. Such limitation set a severe constraints on possible range of the depth for reconstruction. In order to overcome the problem, Depth from Defocus (DfD) method using multiple patterns with different in-focus depth is proposed to expand the depth range in the paper. With the method, not only the range of the depth is extended, but also the shape can be recovered even if there is an obstacle between the projector and the target, because of the large aperture of the projector. Furthermore, thanks to the advantage of DfD which does not require baseline between the cameras and the projector, occlusion does not occur with the method. In order to verify the effectiveness of the method, several experiments using the actual system was conducted to estimate the depth of several objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1