{"title":"地球物理调查结果操作质量评价中机器学习技术的适用性确定","authors":"Kirill Abramov, J. Grundspeņķis","doi":"10.2478/acss-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract Well logging, also known as a geophysical survey, is one of the main components of a nuclear fuel cycle. This survey follows directly after the drilling process, and the operational quality assessment of its results is a very serious problem. Any mistake in this survey can lead to the culling of the whole well. This paper examines the feasibility of applying machine learning techniques to quickly assess the well logging quality results. The studies were carried out by a reference well modelling for the selected uranium deposit of the Republic of Kazakhstan and further comparing it with the results of geophysical surveys recorded earlier. The parameters of the geophysical methods and the comparison rules for them were formulated after the reference well modelling process. The classification trees and the artificial neural networks were used during the research process and the results obtained for both methods were compared with each other. The results of this paper may be useful to the enterprises engaged in the geophysical well surveys and data processing obtained during the logging process.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"187 1","pages":"153 - 162"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suitability Determination of Machine Learning Techniques for the Operational Quality Assessment of Geophysical Survey Results\",\"authors\":\"Kirill Abramov, J. Grundspeņķis\",\"doi\":\"10.2478/acss-2020-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Well logging, also known as a geophysical survey, is one of the main components of a nuclear fuel cycle. This survey follows directly after the drilling process, and the operational quality assessment of its results is a very serious problem. Any mistake in this survey can lead to the culling of the whole well. This paper examines the feasibility of applying machine learning techniques to quickly assess the well logging quality results. The studies were carried out by a reference well modelling for the selected uranium deposit of the Republic of Kazakhstan and further comparing it with the results of geophysical surveys recorded earlier. The parameters of the geophysical methods and the comparison rules for them were formulated after the reference well modelling process. The classification trees and the artificial neural networks were used during the research process and the results obtained for both methods were compared with each other. The results of this paper may be useful to the enterprises engaged in the geophysical well surveys and data processing obtained during the logging process.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"187 1\",\"pages\":\"153 - 162\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2020-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2020-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Suitability Determination of Machine Learning Techniques for the Operational Quality Assessment of Geophysical Survey Results
Abstract Well logging, also known as a geophysical survey, is one of the main components of a nuclear fuel cycle. This survey follows directly after the drilling process, and the operational quality assessment of its results is a very serious problem. Any mistake in this survey can lead to the culling of the whole well. This paper examines the feasibility of applying machine learning techniques to quickly assess the well logging quality results. The studies were carried out by a reference well modelling for the selected uranium deposit of the Republic of Kazakhstan and further comparing it with the results of geophysical surveys recorded earlier. The parameters of the geophysical methods and the comparison rules for them were formulated after the reference well modelling process. The classification trees and the artificial neural networks were used during the research process and the results obtained for both methods were compared with each other. The results of this paper may be useful to the enterprises engaged in the geophysical well surveys and data processing obtained during the logging process.