D. Tang, Jianbo Yang, D. Bamford, Dongling Xu, M. Waugh, J. Bamford, Shulian Zhang
{"title":"大型企业风险管理的证据推理方法","authors":"D. Tang, Jianbo Yang, D. Bamford, Dongling Xu, M. Waugh, J. Bamford, Shulian Zhang","doi":"10.1142/S0218488512400028","DOIUrl":null,"url":null,"abstract":"Enterprise Risk Management (ERM) is a framework that is used by large organizations to manage risk as a whole. The key difference between ERM and traditional risk management is that in the latter risks are managed individually, whilst the former requires the aggregation of risks to facilitate risk management. However, current methods for risk aggregation have various limitations when applied under the context of ERM, such as the requirement for accurate and complete information about risk factors, the inability to handle different kinds of uncertainty which are inevitable during the risk aggregation process, and so on. Due to its unique advantages in accommodating different forms of both complete and incomplete information and handling different kinds of uncertainty, the Evidential Reasoning (ER) approach together with its implementation entitled Intelligent Decision System (IDS) is introduced in this paper for risk aggregation in ERM to overcome the limitations and to provide a comprehensive analysis for risk management based on the aggregation result. To demonstrate the applicability of the ER approach and IDS in ERM, a case study is analyzed in detail regarding risk aggregation and risk management for a health care organization in North England.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"31 1","pages":"17-30"},"PeriodicalIF":1.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The evidential reasoning approach for risk management in large enterprises\",\"authors\":\"D. Tang, Jianbo Yang, D. Bamford, Dongling Xu, M. Waugh, J. Bamford, Shulian Zhang\",\"doi\":\"10.1142/S0218488512400028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enterprise Risk Management (ERM) is a framework that is used by large organizations to manage risk as a whole. The key difference between ERM and traditional risk management is that in the latter risks are managed individually, whilst the former requires the aggregation of risks to facilitate risk management. However, current methods for risk aggregation have various limitations when applied under the context of ERM, such as the requirement for accurate and complete information about risk factors, the inability to handle different kinds of uncertainty which are inevitable during the risk aggregation process, and so on. Due to its unique advantages in accommodating different forms of both complete and incomplete information and handling different kinds of uncertainty, the Evidential Reasoning (ER) approach together with its implementation entitled Intelligent Decision System (IDS) is introduced in this paper for risk aggregation in ERM to overcome the limitations and to provide a comprehensive analysis for risk management based on the aggregation result. To demonstrate the applicability of the ER approach and IDS in ERM, a case study is analyzed in detail regarding risk aggregation and risk management for a health care organization in North England.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"31 1\",\"pages\":\"17-30\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488512400028\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488512400028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The evidential reasoning approach for risk management in large enterprises
Enterprise Risk Management (ERM) is a framework that is used by large organizations to manage risk as a whole. The key difference between ERM and traditional risk management is that in the latter risks are managed individually, whilst the former requires the aggregation of risks to facilitate risk management. However, current methods for risk aggregation have various limitations when applied under the context of ERM, such as the requirement for accurate and complete information about risk factors, the inability to handle different kinds of uncertainty which are inevitable during the risk aggregation process, and so on. Due to its unique advantages in accommodating different forms of both complete and incomplete information and handling different kinds of uncertainty, the Evidential Reasoning (ER) approach together with its implementation entitled Intelligent Decision System (IDS) is introduced in this paper for risk aggregation in ERM to overcome the limitations and to provide a comprehensive analysis for risk management based on the aggregation result. To demonstrate the applicability of the ER approach and IDS in ERM, a case study is analyzed in detail regarding risk aggregation and risk management for a health care organization in North England.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.