利用UNIQUAC模型预测依托度酸、拉莫三嗪、地西泮和氯硝西泮在共溶剂混合物中的溶解度

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY Iranian Journal of Chemistry & Chemical Engineering-international English Edition Pub Date : 2021-08-09 DOI:10.30492/IJCCE.2021.131946.4260
S. Hashemi, Abdolhamid Khodadadi, Mahmood Dinmohammad
{"title":"利用UNIQUAC模型预测依托度酸、拉莫三嗪、地西泮和氯硝西泮在共溶剂混合物中的溶解度","authors":"S. Hashemi, Abdolhamid Khodadadi, Mahmood Dinmohammad","doi":"10.30492/IJCCE.2021.131946.4260","DOIUrl":null,"url":null,"abstract":"Etodolac, Lamotrigine, diazepam, and clonazepamine are four important drugs in the pharmaceutical industry that optimizing the solvent concentration in the least amount can reduce the cost and toxicity of these drugs. Due to the lack of thermodynamic modeling based on the activity coefficient equation in previous studies for solubility of Etodolac, Lamotrigine, diazepam, and clonazepamine in aqueous solution, in this study, based on thermodynamic equations and UNIQUAC model, their solubility is optimized with the presence of water and ethanol. Based on the objective function defined, the error rate of the model optimization value was acceptable for each system. The results of this study can be used to better understand the intermolecular reaction of Etodolac, Lamotrigine diazepam, and clonazepamine in the presence of ethanol and water solvents. Also, the importance of the optimization results of this study in order to design a computer program to predict the solubility of these drugs is significant.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubility Prediction of Etodolac, Lamotrigine, Diazepam and Clonazepamin in Cosolvent Mixtures Using UNIQUAC Model\",\"authors\":\"S. Hashemi, Abdolhamid Khodadadi, Mahmood Dinmohammad\",\"doi\":\"10.30492/IJCCE.2021.131946.4260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Etodolac, Lamotrigine, diazepam, and clonazepamine are four important drugs in the pharmaceutical industry that optimizing the solvent concentration in the least amount can reduce the cost and toxicity of these drugs. Due to the lack of thermodynamic modeling based on the activity coefficient equation in previous studies for solubility of Etodolac, Lamotrigine, diazepam, and clonazepamine in aqueous solution, in this study, based on thermodynamic equations and UNIQUAC model, their solubility is optimized with the presence of water and ethanol. Based on the objective function defined, the error rate of the model optimization value was acceptable for each system. The results of this study can be used to better understand the intermolecular reaction of Etodolac, Lamotrigine diazepam, and clonazepamine in the presence of ethanol and water solvents. Also, the importance of the optimization results of this study in order to design a computer program to predict the solubility of these drugs is significant.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.131946.4260\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.131946.4260","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

依托度酸、拉莫三嗪、地西泮和氯硝西泮是制药行业的四种重要药物,在最小的用量下优化溶剂浓度可以降低这些药物的成本和毒性。由于以往的研究中缺乏基于活度系数方程的热力学模型对依托度酸、拉莫三嗪、地西泮和氯硝西胺在水溶液中的溶解度进行建模,本研究基于热力学方程和UNIQUAC模型,对其在水和乙醇存在下的溶解度进行优化。根据所定义的目标函数,模型优化值的错误率对各系统都是可接受的。本研究结果可用于更好地了解依托度酸、拉莫三嗪、安定和氯硝西泮在乙醇和水溶剂存在下的分子间反应。此外,本研究的优化结果对于设计计算机程序来预测这些药物的溶解度具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solubility Prediction of Etodolac, Lamotrigine, Diazepam and Clonazepamin in Cosolvent Mixtures Using UNIQUAC Model
Etodolac, Lamotrigine, diazepam, and clonazepamine are four important drugs in the pharmaceutical industry that optimizing the solvent concentration in the least amount can reduce the cost and toxicity of these drugs. Due to the lack of thermodynamic modeling based on the activity coefficient equation in previous studies for solubility of Etodolac, Lamotrigine, diazepam, and clonazepamine in aqueous solution, in this study, based on thermodynamic equations and UNIQUAC model, their solubility is optimized with the presence of water and ethanol. Based on the objective function defined, the error rate of the model optimization value was acceptable for each system. The results of this study can be used to better understand the intermolecular reaction of Etodolac, Lamotrigine diazepam, and clonazepamine in the presence of ethanol and water solvents. Also, the importance of the optimization results of this study in order to design a computer program to predict the solubility of these drugs is significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
期刊最新文献
Thermodynamic Modeling the Solubility of CO2 in the Binary and Three-Component Aqua System of Methyldiethanolamine (MDEA) Using the N-Wilson-NRF The high performance of diethylhydroxylamine in comparison with hydrazine for the removal of dissolved oxygen from boilers of power plant Acoustofluidic separation of microparticles: a numerical study Morpho-structural characterization and electrophoretic deposition of xonotlite obtained by a hydrothermal method A 2E Analysis and Optimization of a Hybrid Solar Humidification-Dehumidification Water Desalination System and Solar Water Heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1