{"title":"共边高自旋d7化合物中的磁耦合","authors":"S. Winter","doi":"10.1088/2515-7639/ac94f8","DOIUrl":null,"url":null,"abstract":"High-spin d 7 Co(II) compounds have recently been identified as possible platforms for realizing highly anisotropic and bond-dependent couplings featured in quantum-compass models such as the celebrated Kitaev model. In order to evaluate this potential, we consider all symmetry-allowed contributions to the magnetic exchange for ideal edge-sharing bonds. Though a combination of ab-initio and cluster many-body calculations we conclude that bond-dependent couplings are generally suppressed in favor of Heisenberg exchange for real materials. Consequences for several prominent materials including Na2Co2TeO6 and BaCo2(AsO4)2 are discussed.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Magnetic couplings in edge-sharing high-spin d 7 compounds\",\"authors\":\"S. Winter\",\"doi\":\"10.1088/2515-7639/ac94f8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-spin d 7 Co(II) compounds have recently been identified as possible platforms for realizing highly anisotropic and bond-dependent couplings featured in quantum-compass models such as the celebrated Kitaev model. In order to evaluate this potential, we consider all symmetry-allowed contributions to the magnetic exchange for ideal edge-sharing bonds. Though a combination of ab-initio and cluster many-body calculations we conclude that bond-dependent couplings are generally suppressed in favor of Heisenberg exchange for real materials. Consequences for several prominent materials including Na2Co2TeO6 and BaCo2(AsO4)2 are discussed.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ac94f8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac94f8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Magnetic couplings in edge-sharing high-spin d 7 compounds
High-spin d 7 Co(II) compounds have recently been identified as possible platforms for realizing highly anisotropic and bond-dependent couplings featured in quantum-compass models such as the celebrated Kitaev model. In order to evaluate this potential, we consider all symmetry-allowed contributions to the magnetic exchange for ideal edge-sharing bonds. Though a combination of ab-initio and cluster many-body calculations we conclude that bond-dependent couplings are generally suppressed in favor of Heisenberg exchange for real materials. Consequences for several prominent materials including Na2Co2TeO6 and BaCo2(AsO4)2 are discussed.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.