TSP(1,2)问题的进化优化分析

IF 1.4 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Computational Science and Engineering Pub Date : 2016-01-01 DOI:10.1504/IJCSE.2016.10007955
Xiaoyun Xia, Xinsheng Lai, Chen Yi
{"title":"TSP(1,2)问题的进化优化分析","authors":"Xiaoyun Xia, Xinsheng Lai, Chen Yi","doi":"10.1504/IJCSE.2016.10007955","DOIUrl":null,"url":null,"abstract":"TSP(1,2) problem is a special case of the travelling salesperson problem which is NP-hard. Many heuristics including evolutionary algorithms (EAs) are proposed to solve the TSP(1,2) problem. However, we know little about the performance of the EAs for the TSP(1,2) problem. This paper presents an approximation analysis of the (1+1) EA on this problem. It is shown that both the (1+1) EA and (µ + λ) EA can obtain 3/2 approximation ratio for this problem in expected polynomial runtime O(n3) and O ((µ/λ)n3 + n) , respectively. Furthermore, we prove that the (1+1) EA can provide a much tighter upper bound than a simple ACO on the TSP(1,2) problem.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"216 1","pages":"261-268"},"PeriodicalIF":1.4000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The analysis of evolutionary optimisation on the TSP(1,2) problem\",\"authors\":\"Xiaoyun Xia, Xinsheng Lai, Chen Yi\",\"doi\":\"10.1504/IJCSE.2016.10007955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TSP(1,2) problem is a special case of the travelling salesperson problem which is NP-hard. Many heuristics including evolutionary algorithms (EAs) are proposed to solve the TSP(1,2) problem. However, we know little about the performance of the EAs for the TSP(1,2) problem. This paper presents an approximation analysis of the (1+1) EA on this problem. It is shown that both the (1+1) EA and (µ + λ) EA can obtain 3/2 approximation ratio for this problem in expected polynomial runtime O(n3) and O ((µ/λ)n3 + n) , respectively. Furthermore, we prove that the (1+1) EA can provide a much tighter upper bound than a simple ACO on the TSP(1,2) problem.\",\"PeriodicalId\":47380,\"journal\":{\"name\":\"International Journal of Computational Science and Engineering\",\"volume\":\"216 1\",\"pages\":\"261-268\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2016.10007955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2016.10007955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

TSP(1,2)问题是旅行推销员问题的一种np困难的特殊情况。提出了包括进化算法在内的许多启发式算法来解决TSP(1,2)问题。然而,对于TSP(1,2)问题,我们对ea的性能知之甚少。本文对这一问题给出了(1+1)EA的近似分析。结果表明,(1+1)EA和(µ+ λ) EA分别可以在期望多项式运行时间O(n3)和O((µ/λ)n3 + n)下获得该问题的3/2近似比。进一步证明了在TSP(1,2)问题上,(1+1)蚁群算法可以提供比简单蚁群算法更紧的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The analysis of evolutionary optimisation on the TSP(1,2) problem
TSP(1,2) problem is a special case of the travelling salesperson problem which is NP-hard. Many heuristics including evolutionary algorithms (EAs) are proposed to solve the TSP(1,2) problem. However, we know little about the performance of the EAs for the TSP(1,2) problem. This paper presents an approximation analysis of the (1+1) EA on this problem. It is shown that both the (1+1) EA and (µ + λ) EA can obtain 3/2 approximation ratio for this problem in expected polynomial runtime O(n3) and O ((µ/λ)n3 + n) , respectively. Furthermore, we prove that the (1+1) EA can provide a much tighter upper bound than a simple ACO on the TSP(1,2) problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Science and Engineering
International Journal of Computational Science and Engineering COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
40.00%
发文量
73
期刊介绍: Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.
期刊最新文献
Integer wavelet transform based data hiding scheme for electrocardiogram signals protection Integrated power information operation and maintenance system based on D3QN algorithm with experience replay Availability assessment and sensitivity analysis of an MBaaS platform SLIC-SSA: an image segmentation method based on superpixel and sparrow search algorithm Time series models for web service activity prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1