气/液金属磁流体动力发生器两相流的数值研究

M. Liao, C. Dai, can ma, Yong Liu, Zheng-Xing Zhao, Zhouyang Liu
{"title":"气/液金属磁流体动力发生器两相流的数值研究","authors":"M. Liao, C. Dai, can ma, Yong Liu, Zheng-Xing Zhao, Zhouyang Liu","doi":"10.1115/ICONE26-82231","DOIUrl":null,"url":null,"abstract":"The gas/liquid metal magnetohydrodynamic generator (G/LM-MHD) with the mixture of gas and liquid metal as working fluids shows a promising future due to recent development of liquid metal cooled nuclear reactors. Previous efforts on the G/LM-MHD energy conversion systems have predicted a higher efficiency than traditional thermodynamics cycle. However, most of the earlier studies focus on the conception designs, feasibility analysis and preliminary experiments, while less attention paid on some specific problems such as the bubble phenomenon in the two-phase flow. Therefore, this paper deals with numerical study on the performance characteristics of the gas/liquid metal two-phase flow in an ideal Faraday-type MHD channel, of which the geometry structure is 30 × 30 × 80 mm cuboid segmentary style. The conductive mixture fluid is composed of nitrogen as the gas phase and gallium as the liquid phase (N2/Ga). The temperature at the channel inlet is about 600 K considering the heat transfer after the mixing chamber, while the inlet velocity is around 10 m/s and gas volumetric void fraction is 50%. The external magnetic field is assumed as 4 Tesla adopting the superconducting technology, which seems essential for MHD industrial practice. Then the simulation is accomplished using a modified two-phase mixture model considering the electromagnetic influence. The simulation results show that the distribution of temperature changes much weaker than pressure and velocity, which agrees with earlier one-dimension analysis. On the other hand, the results characterizes clearly the increase of the void fraction close to the electrodes, which can explain intuitively the decrease of the power-generating capacity. Besides, the power output is predicted to reach maximum 22.5 kW while the voltage is 1.2 V and the power density can be 312.5 MW/m3 which is far beyond traditional steam turbines. This study shows a promising future of the gas/liquid metal MHD generator for the small nuclear plants and power systems.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"332 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Study on the Two-Phase Flow for a Gas/Liquid Metal Magnetohydrodynamic Generator\",\"authors\":\"M. Liao, C. Dai, can ma, Yong Liu, Zheng-Xing Zhao, Zhouyang Liu\",\"doi\":\"10.1115/ICONE26-82231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas/liquid metal magnetohydrodynamic generator (G/LM-MHD) with the mixture of gas and liquid metal as working fluids shows a promising future due to recent development of liquid metal cooled nuclear reactors. Previous efforts on the G/LM-MHD energy conversion systems have predicted a higher efficiency than traditional thermodynamics cycle. However, most of the earlier studies focus on the conception designs, feasibility analysis and preliminary experiments, while less attention paid on some specific problems such as the bubble phenomenon in the two-phase flow. Therefore, this paper deals with numerical study on the performance characteristics of the gas/liquid metal two-phase flow in an ideal Faraday-type MHD channel, of which the geometry structure is 30 × 30 × 80 mm cuboid segmentary style. The conductive mixture fluid is composed of nitrogen as the gas phase and gallium as the liquid phase (N2/Ga). The temperature at the channel inlet is about 600 K considering the heat transfer after the mixing chamber, while the inlet velocity is around 10 m/s and gas volumetric void fraction is 50%. The external magnetic field is assumed as 4 Tesla adopting the superconducting technology, which seems essential for MHD industrial practice. Then the simulation is accomplished using a modified two-phase mixture model considering the electromagnetic influence. The simulation results show that the distribution of temperature changes much weaker than pressure and velocity, which agrees with earlier one-dimension analysis. On the other hand, the results characterizes clearly the increase of the void fraction close to the electrodes, which can explain intuitively the decrease of the power-generating capacity. Besides, the power output is predicted to reach maximum 22.5 kW while the voltage is 1.2 V and the power density can be 312.5 MW/m3 which is far beyond traditional steam turbines. This study shows a promising future of the gas/liquid metal MHD generator for the small nuclear plants and power systems.\",\"PeriodicalId\":65607,\"journal\":{\"name\":\"International Journal of Plant Engineering and Management\",\"volume\":\"332 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Engineering and Management\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-82231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Engineering and Management","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1115/ICONE26-82231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于近年来液态金属冷却核反应堆的发展,以气体和液态金属的混合物为工质的气/液态金属磁流体动力发生器(G/LM-MHD)具有广阔的发展前景。先前对G/LM-MHD能量转换系统的研究表明,该系统的效率高于传统的热力学循环。然而,早期的研究大多集中在概念设计、可行性分析和初步实验上,而对两相流中的气泡现象等具体问题关注较少。因此,本文对几何结构为30 × 30 × 80 mm长方体段型的理想法拉第型MHD通道中金属气液两相流动的性能特性进行了数值研究。导电混合流体由氮气为气相,镓为液相(N2/Ga)组成。考虑混合室后的传热,通道入口温度约为600 K,入口速度约为10 m/s,气体体积空隙率为50%。外磁场假设为4特斯拉,采用超导技术,这对于MHD工业实践来说是必不可少的。然后采用考虑电磁影响的改进两相混合模型进行仿真。模拟结果表明,温度分布的变化比压力和速度的变化弱得多,这与之前的一维分析结果一致。另一方面,电极附近的空隙率明显增加,这可以直观地解释发电能力的下降。在电压为1.2 V时,预计输出功率最大可达22.5 kW,功率密度可达312.5 MW/m3,远远超过传统汽轮机。该研究表明,气/液金属MHD发电机在小型核电站和电力系统中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Study on the Two-Phase Flow for a Gas/Liquid Metal Magnetohydrodynamic Generator
The gas/liquid metal magnetohydrodynamic generator (G/LM-MHD) with the mixture of gas and liquid metal as working fluids shows a promising future due to recent development of liquid metal cooled nuclear reactors. Previous efforts on the G/LM-MHD energy conversion systems have predicted a higher efficiency than traditional thermodynamics cycle. However, most of the earlier studies focus on the conception designs, feasibility analysis and preliminary experiments, while less attention paid on some specific problems such as the bubble phenomenon in the two-phase flow. Therefore, this paper deals with numerical study on the performance characteristics of the gas/liquid metal two-phase flow in an ideal Faraday-type MHD channel, of which the geometry structure is 30 × 30 × 80 mm cuboid segmentary style. The conductive mixture fluid is composed of nitrogen as the gas phase and gallium as the liquid phase (N2/Ga). The temperature at the channel inlet is about 600 K considering the heat transfer after the mixing chamber, while the inlet velocity is around 10 m/s and gas volumetric void fraction is 50%. The external magnetic field is assumed as 4 Tesla adopting the superconducting technology, which seems essential for MHD industrial practice. Then the simulation is accomplished using a modified two-phase mixture model considering the electromagnetic influence. The simulation results show that the distribution of temperature changes much weaker than pressure and velocity, which agrees with earlier one-dimension analysis. On the other hand, the results characterizes clearly the increase of the void fraction close to the electrodes, which can explain intuitively the decrease of the power-generating capacity. Besides, the power output is predicted to reach maximum 22.5 kW while the voltage is 1.2 V and the power density can be 312.5 MW/m3 which is far beyond traditional steam turbines. This study shows a promising future of the gas/liquid metal MHD generator for the small nuclear plants and power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
768
期刊最新文献
Preliminary LOCA Analysis of Heating-Reactor of Advanced Low-Pressurized and Passive Safety System (HAPPY) Estimation of Mitigation Effects of Sodium Nanofluid for SGTR Accidents in SFR Prediction and Sensibility Analysis for Nuclear Safety-Critical Software Reliability of DCS Numerical Study on the Two-Phase Flow for a Gas/Liquid Metal Magnetohydrodynamic Generator Simulated Training Instrument of Nuclear Radiation Reconnaissance Based on an Improved Ellipse Numerical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1