RDF知识图分析方法综述

Maria-Evangelia Papadaki, Yannis Tzitzikas, M. Mountantonakis
{"title":"RDF知识图分析方法综述","authors":"Maria-Evangelia Papadaki, Yannis Tzitzikas, M. Mountantonakis","doi":"10.3390/analytics2010004","DOIUrl":null,"url":null,"abstract":"There are several Knowledge Graphs expressed in RDF (Resource Description Framework) that aggregate/integrate data from various sources for providing unified access services and enabling insightful analytics. We observe this trend in almost every domain of our life. However, the provision of effective, efficient, and user-friendly analytic services and systems is quite challenging. In this paper we survey the approaches, systems and tools that enable the formulation of analytic queries over KGs expressed in RDF. We identify the main challenges, we distinguish two main categories of analytic queries (domain specific and quality-related), and five kinds of approaches for analytics over RDF. Then, we describe in brief the works of each category and related aspects, like efficiency and visualization. We hope this collection to be useful for researchers and engineers for advancing the capabilities and user-friendliness of methods for analytics over knowledge graphs.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Brief Survey of Methods for Analytics over RDF Knowledge Graphs\",\"authors\":\"Maria-Evangelia Papadaki, Yannis Tzitzikas, M. Mountantonakis\",\"doi\":\"10.3390/analytics2010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are several Knowledge Graphs expressed in RDF (Resource Description Framework) that aggregate/integrate data from various sources for providing unified access services and enabling insightful analytics. We observe this trend in almost every domain of our life. However, the provision of effective, efficient, and user-friendly analytic services and systems is quite challenging. In this paper we survey the approaches, systems and tools that enable the formulation of analytic queries over KGs expressed in RDF. We identify the main challenges, we distinguish two main categories of analytic queries (domain specific and quality-related), and five kinds of approaches for analytics over RDF. Then, we describe in brief the works of each category and related aspects, like efficiency and visualization. We hope this collection to be useful for researchers and engineers for advancing the capabilities and user-friendliness of methods for analytics over knowledge graphs.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有几种用RDF(资源描述框架)表示的知识图,它们聚合/集成来自不同来源的数据,以提供统一的访问服务并支持深刻的分析。我们在生活的几乎每个领域都观察到这种趋势。然而,提供有效、高效和用户友好的分析服务和系统是相当具有挑战性的。在本文中,我们概述了能够对RDF表示的KGs进行分析查询的方法、系统和工具。我们确定了主要的挑战,区分了分析查询的两个主要类别(特定于领域的和与质量相关的),以及基于RDF的五种分析方法。然后,我们简要地描述了每个类别的工作以及相关的方面,如效率和可视化。我们希望这个集合对研究人员和工程师有用,以提高知识图分析方法的功能和用户友好性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Brief Survey of Methods for Analytics over RDF Knowledge Graphs
There are several Knowledge Graphs expressed in RDF (Resource Description Framework) that aggregate/integrate data from various sources for providing unified access services and enabling insightful analytics. We observe this trend in almost every domain of our life. However, the provision of effective, efficient, and user-friendly analytic services and systems is quite challenging. In this paper we survey the approaches, systems and tools that enable the formulation of analytic queries over KGs expressed in RDF. We identify the main challenges, we distinguish two main categories of analytic queries (domain specific and quality-related), and five kinds of approaches for analytics over RDF. Then, we describe in brief the works of each category and related aspects, like efficiency and visualization. We hope this collection to be useful for researchers and engineers for advancing the capabilities and user-friendliness of methods for analytics over knowledge graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
A Comparative Analysis of VirLock and Bacteriophage ϕ6 through the Lens of Game Theory Can Oral Grades Predict Final Examination Scores? Case Study in a Higher Education Military Academy Relating the Ramsay Quotient Model to the Classical D-Scoring Rule An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market A Novel Curve Clustering Method for Functional Data: Applications to COVID-19 and Financial Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1