E. Feulvarch, A. Wasylyk, Abdelhak Benrabia, Divjot Jolly, P. Duranton
{"title":"基于标准有限元软件特征的网格变形及其在裂纹扩展中的应用","authors":"E. Feulvarch, A. Wasylyk, Abdelhak Benrabia, Divjot Jolly, P. Duranton","doi":"10.1115/pvp2022-78445","DOIUrl":null,"url":null,"abstract":"\n In the field of numerical simulation, mesh-morphing is a technique that can be used to modify an existing Finite Element Mesh by the means of applying a specific distortion. Most of mesh-morphing methods simply change the positions of the nodes, hence the initial mesh connectivity, as well as the material properties are retained, and the boundary conditions, loadings, contact settings, etc. can be applied without any change in the input file. In this way, a simulation model can be quickly adapted with regards to any changes in the geometry or a new geometry can be created without using a CAD model.\n This article introduces the concept of mesh morphing using only standard Finite Element Analysis software features. The presented morphing method is used to modify a complicated mesh given a sample of displacements at known locations. Like standard morphing techniques based on the Radial Basis Functions, a weight function is calculated for each node by using steady state thermal calculation. Then, displacements at known locations are imposed to some nodes and a standard mechanical equation system is solved to calculate the displacements of all the nodes of the structure.\n The presented method was applied to solve some industrial applications for Class 1 Nuclear components which are showed here in order to illustrate the method.","PeriodicalId":23700,"journal":{"name":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesh Morphing Based on Standard FEA Software Features and Application to Crack Propagation\",\"authors\":\"E. Feulvarch, A. Wasylyk, Abdelhak Benrabia, Divjot Jolly, P. Duranton\",\"doi\":\"10.1115/pvp2022-78445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the field of numerical simulation, mesh-morphing is a technique that can be used to modify an existing Finite Element Mesh by the means of applying a specific distortion. Most of mesh-morphing methods simply change the positions of the nodes, hence the initial mesh connectivity, as well as the material properties are retained, and the boundary conditions, loadings, contact settings, etc. can be applied without any change in the input file. In this way, a simulation model can be quickly adapted with regards to any changes in the geometry or a new geometry can be created without using a CAD model.\\n This article introduces the concept of mesh morphing using only standard Finite Element Analysis software features. The presented morphing method is used to modify a complicated mesh given a sample of displacements at known locations. Like standard morphing techniques based on the Radial Basis Functions, a weight function is calculated for each node by using steady state thermal calculation. Then, displacements at known locations are imposed to some nodes and a standard mechanical equation system is solved to calculate the displacements of all the nodes of the structure.\\n The presented method was applied to solve some industrial applications for Class 1 Nuclear components which are showed here in order to illustrate the method.\",\"PeriodicalId\":23700,\"journal\":{\"name\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computer Technology and Bolted Joints; Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2022-78445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computer Technology and Bolted Joints; Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2022-78445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesh Morphing Based on Standard FEA Software Features and Application to Crack Propagation
In the field of numerical simulation, mesh-morphing is a technique that can be used to modify an existing Finite Element Mesh by the means of applying a specific distortion. Most of mesh-morphing methods simply change the positions of the nodes, hence the initial mesh connectivity, as well as the material properties are retained, and the boundary conditions, loadings, contact settings, etc. can be applied without any change in the input file. In this way, a simulation model can be quickly adapted with regards to any changes in the geometry or a new geometry can be created without using a CAD model.
This article introduces the concept of mesh morphing using only standard Finite Element Analysis software features. The presented morphing method is used to modify a complicated mesh given a sample of displacements at known locations. Like standard morphing techniques based on the Radial Basis Functions, a weight function is calculated for each node by using steady state thermal calculation. Then, displacements at known locations are imposed to some nodes and a standard mechanical equation system is solved to calculate the displacements of all the nodes of the structure.
The presented method was applied to solve some industrial applications for Class 1 Nuclear components which are showed here in order to illustrate the method.