Qi Zhang, Ronghua Li, Qixuan Yang, Guoren Wang, Lu Qin
{"title":"高效Top-k边结构多样性搜索","authors":"Qi Zhang, Ronghua Li, Qixuan Yang, Guoren Wang, Lu Qin","doi":"10.1109/ICDE48307.2020.00025","DOIUrl":null,"url":null,"abstract":"The structural diversity of an edge, which is measured by the number of connected components of the edge’s ego-network, has recently been recognized as a key metric for analyzing social influence and information diffusion in social networks. Given this, an important problem in social network analysis is to identify top-k edges that have the highest structural diversities. In this work, we for the first time perform a systematical study for the top-k edge structural diversity search problem on large graphs. Specifically, we first develop a new online search framework with two basic upper-bounding rules to efficiently solve this problem. Then, we propose a new index structure using near-linear space to process the top-k edge structural diversity search in near-optimal time. To create such an index structure, we devise an efficient algorithm based on an interesting connection between our problem and the 4-clique enumeration problem. In addition, we also propose efficient index maintenance techniques to handle dynamic graphs. The results of extensive experiments on five large real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"56 1","pages":"205-216"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Top-k Edge Structural Diversity Search\",\"authors\":\"Qi Zhang, Ronghua Li, Qixuan Yang, Guoren Wang, Lu Qin\",\"doi\":\"10.1109/ICDE48307.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural diversity of an edge, which is measured by the number of connected components of the edge’s ego-network, has recently been recognized as a key metric for analyzing social influence and information diffusion in social networks. Given this, an important problem in social network analysis is to identify top-k edges that have the highest structural diversities. In this work, we for the first time perform a systematical study for the top-k edge structural diversity search problem on large graphs. Specifically, we first develop a new online search framework with two basic upper-bounding rules to efficiently solve this problem. Then, we propose a new index structure using near-linear space to process the top-k edge structural diversity search in near-optimal time. To create such an index structure, we devise an efficient algorithm based on an interesting connection between our problem and the 4-clique enumeration problem. In addition, we also propose efficient index maintenance techniques to handle dynamic graphs. The results of extensive experiments on five large real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"56 1\",\"pages\":\"205-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The structural diversity of an edge, which is measured by the number of connected components of the edge’s ego-network, has recently been recognized as a key metric for analyzing social influence and information diffusion in social networks. Given this, an important problem in social network analysis is to identify top-k edges that have the highest structural diversities. In this work, we for the first time perform a systematical study for the top-k edge structural diversity search problem on large graphs. Specifically, we first develop a new online search framework with two basic upper-bounding rules to efficiently solve this problem. Then, we propose a new index structure using near-linear space to process the top-k edge structural diversity search in near-optimal time. To create such an index structure, we devise an efficient algorithm based on an interesting connection between our problem and the 4-clique enumeration problem. In addition, we also propose efficient index maintenance techniques to handle dynamic graphs. The results of extensive experiments on five large real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.