定制处理器设计,高效,灵活的卢卡斯-卡纳德光流

S. Smets, T. Goedemé, M. Verhelst
{"title":"定制处理器设计,高效,灵活的卢卡斯-卡纳德光流","authors":"S. Smets, T. Goedemé, M. Verhelst","doi":"10.1109/DASIP.2016.7853810","DOIUrl":null,"url":null,"abstract":"State-of-the-art solutions to optical flow fail to jointly offer high density flow estimation, low power consumption and real time operation, rendering them unsuitable for embedded applications. Joint hardware-software scalability at run-time is crucial to achieve these conflicting requirements in one device. This paper therefore presents a scalable Lucas-Kanade optical flow algorithm, together with a flexible power-optimized processor architecture. The C-programmable processor exploits algorithmic scalability through innovations in its memory structure, memory interface, and datapath optimized for efficient convolutions. Jointly, the scalable flow algorithm and optimized computer vision hardware platform enable applications to on-the-fly trade-off throughput and power consumption in function of flow density and accuracy. The processor chip is synthesized in 40nm CMOS technology and verified on FPGA. The architecture is capable of scaling the frame rate at run-time and processes 16fps of dense optical flow at 640×480 resolution with 15.06° average angular error, while only consuming 24mW.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"54 1","pages":"138-145"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Custom processor design for efficient, yet flexible Lucas-Kanade optical flow\",\"authors\":\"S. Smets, T. Goedemé, M. Verhelst\",\"doi\":\"10.1109/DASIP.2016.7853810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art solutions to optical flow fail to jointly offer high density flow estimation, low power consumption and real time operation, rendering them unsuitable for embedded applications. Joint hardware-software scalability at run-time is crucial to achieve these conflicting requirements in one device. This paper therefore presents a scalable Lucas-Kanade optical flow algorithm, together with a flexible power-optimized processor architecture. The C-programmable processor exploits algorithmic scalability through innovations in its memory structure, memory interface, and datapath optimized for efficient convolutions. Jointly, the scalable flow algorithm and optimized computer vision hardware platform enable applications to on-the-fly trade-off throughput and power consumption in function of flow density and accuracy. The processor chip is synthesized in 40nm CMOS technology and verified on FPGA. The architecture is capable of scaling the frame rate at run-time and processes 16fps of dense optical flow at 640×480 resolution with 15.06° average angular error, while only consuming 24mW.\",\"PeriodicalId\":6494,\"journal\":{\"name\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"volume\":\"54 1\",\"pages\":\"138-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2016.7853810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前最先进的光流解决方案无法同时提供高密度流估计、低功耗和实时操作,因此不适合嵌入式应用。运行时的联合软硬件可伸缩性对于在一个设备中实现这些相互冲突的需求至关重要。因此,本文提出了一种可扩展的Lucas-Kanade光流算法,以及一种灵活的功耗优化处理器架构。c可编程处理器通过其内存结构、内存接口和优化的数据路径的创新来利用算法的可扩展性,以实现高效的卷积。可扩展流算法和优化的计算机视觉硬件平台共同使应用程序能够实时权衡流量密度和精度的吞吐量和功耗。该处理器芯片采用40nm CMOS工艺合成,并在FPGA上进行了验证。该架构能够在运行时缩放帧率,并以640×480分辨率处理16fps的密集光流,平均角误差为15.06°,而功耗仅为24mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Custom processor design for efficient, yet flexible Lucas-Kanade optical flow
State-of-the-art solutions to optical flow fail to jointly offer high density flow estimation, low power consumption and real time operation, rendering them unsuitable for embedded applications. Joint hardware-software scalability at run-time is crucial to achieve these conflicting requirements in one device. This paper therefore presents a scalable Lucas-Kanade optical flow algorithm, together with a flexible power-optimized processor architecture. The C-programmable processor exploits algorithmic scalability through innovations in its memory structure, memory interface, and datapath optimized for efficient convolutions. Jointly, the scalable flow algorithm and optimized computer vision hardware platform enable applications to on-the-fly trade-off throughput and power consumption in function of flow density and accuracy. The processor chip is synthesized in 40nm CMOS technology and verified on FPGA. The architecture is capable of scaling the frame rate at run-time and processes 16fps of dense optical flow at 640×480 resolution with 15.06° average angular error, while only consuming 24mW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Brain Blood Vessel Segmentation in Hyperspectral Images Through Linear Operators SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1