语音对话系统中错误分割话语的用户自适应后验恢复

Q1 Arts and Humanities Dialogue and Discourse Pub Date : 2017-12-15 DOI:10.5087/DAD.2017.209
Kazunori Komatani, Naoki Hotta, Satoshi Sato, Mikio Nakano
{"title":"语音对话系统中错误分割话语的用户自适应后验恢复","authors":"Kazunori Komatani, Naoki Hotta, Satoshi Sato, Mikio Nakano","doi":"10.5087/DAD.2017.209","DOIUrl":null,"url":null,"abstract":"Ideally, the users of spoken dialogue systems should be able to speak at their own tempo. Thus, the systems needs to interpret utterances from various users correctly, even when the utterances contain pauses. In response to this issue, we propose an approach based on a posteriori restoration for incorrectly segmented utterances. A crucial part of this approach is to determine whether restoration is required. We use a classification-based approach, adapted to each user. We focus on each user’s dialogue tempo, which can be obtained during the dialogue, and determine the correlation between each user’s tempo and the appropriate thresholds for classification. A linear regression function used to convert the tempos into thresholds is also derived. Experimental results show that the proposed user adaptation approach applied to two restoration classification methods, thresholding and decision trees, improves classification accuracies by 3.0% and 7.4%, respectively, in cross validation.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"13 1","pages":"206-224"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"User-Adaptive A Posteriori Restoration for Incorrectly Segmented Utterances in Spoken Dialogue Systems\",\"authors\":\"Kazunori Komatani, Naoki Hotta, Satoshi Sato, Mikio Nakano\",\"doi\":\"10.5087/DAD.2017.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ideally, the users of spoken dialogue systems should be able to speak at their own tempo. Thus, the systems needs to interpret utterances from various users correctly, even when the utterances contain pauses. In response to this issue, we propose an approach based on a posteriori restoration for incorrectly segmented utterances. A crucial part of this approach is to determine whether restoration is required. We use a classification-based approach, adapted to each user. We focus on each user’s dialogue tempo, which can be obtained during the dialogue, and determine the correlation between each user’s tempo and the appropriate thresholds for classification. A linear regression function used to convert the tempos into thresholds is also derived. Experimental results show that the proposed user adaptation approach applied to two restoration classification methods, thresholding and decision trees, improves classification accuracies by 3.0% and 7.4%, respectively, in cross validation.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"13 1\",\"pages\":\"206-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5087/DAD.2017.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5087/DAD.2017.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

理想情况下,口语对话系统的用户应该能够以自己的节奏说话。因此,系统需要正确地解释来自不同用户的话语,即使这些话语包含停顿。针对这一问题,我们提出了一种基于后验恢复的方法来处理错误分割的话语。这种方法的一个关键部分是确定是否需要恢复。我们使用基于分类的方法,适合每个用户。我们关注每个用户在对话过程中获得的对话速度,并确定每个用户的对话速度与合适的分类阈值之间的相关性。一个线性回归函数用于将速度转换为阈值也被导出。实验结果表明,将用户自适应方法应用于阈值和决策树两种恢复分类方法,交叉验证的分类准确率分别提高了3.0%和7.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User-Adaptive A Posteriori Restoration for Incorrectly Segmented Utterances in Spoken Dialogue Systems
Ideally, the users of spoken dialogue systems should be able to speak at their own tempo. Thus, the systems needs to interpret utterances from various users correctly, even when the utterances contain pauses. In response to this issue, we propose an approach based on a posteriori restoration for incorrectly segmented utterances. A crucial part of this approach is to determine whether restoration is required. We use a classification-based approach, adapted to each user. We focus on each user’s dialogue tempo, which can be obtained during the dialogue, and determine the correlation between each user’s tempo and the appropriate thresholds for classification. A linear regression function used to convert the tempos into thresholds is also derived. Experimental results show that the proposed user adaptation approach applied to two restoration classification methods, thresholding and decision trees, improves classification accuracies by 3.0% and 7.4%, respectively, in cross validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dialogue and Discourse
Dialogue and Discourse Arts and Humanities-Language and Linguistics
CiteScore
1.90
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊介绍: D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.
期刊最新文献
The Conversational Discourse Unit: Identification and Its Role in Conversational Turn-taking Management Exploring the Sensitivity to Alternative Signals of Coherence Relations Scoring Coreference Chains with Split-Antecedent Anaphors Form and Function of Connectives in Chinese Conversational Speech Bullshit, Pragmatic Deception, and Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1