频率、温度、含水量和土壤质地对土壤介电特性的影响:基于深度神经网络的回归模型

IF 0.9 4区 工程技术 Q4 ENGINEERING, CHEMICAL Journal of Microwave Power and Electromagnetic Energy Pub Date : 2022-07-22 DOI:10.1080/08327823.2022.2103630
Prachi Palta, Prabhdeep Kaur, K. S. Mann
{"title":"频率、温度、含水量和土壤质地对土壤介电特性的影响:基于深度神经网络的回归模型","authors":"Prachi Palta, Prabhdeep Kaur, K. S. Mann","doi":"10.1080/08327823.2022.2103630","DOIUrl":null,"url":null,"abstract":"Abstract Dielectric behavior of soil has utmost applications in microwave remote sensing and soil treatment. In the present study, the soil's dielectric properties (Ɛ' and Ɛ\") were measured using the vector network analyzer and an open-ended coaxial probe (85070E, Agilent Technologies) in the region of 0.2 to 14 GHz. The observed results showed that Ɛ' and Ɛ\" strongly depend on frequency, texture, moisture content and temperature. A deep neural network (DNN) based multivariable regression model has been developed to model their behavior, using experimentally observed data to learn its parameters automatically. It shows a five-fold cross-validation root mean square errors (RMSE) of 0.0258 and 0.0336, and R2-scores of 1.0000 and 0.9998, between actual recorded and predicted values of Ɛ' and Ɛ\", respectively. The results of the proposed DNN-based model have been compared with the response surface method (RSM) based model; among these, the DNN-based model shows significantly better results. Further, the DNN-based estimates of Ɛ' and Ɛ\" for loam texture at a moisture content of 18% (i.e. in between observed experiments of 15% and 20%) are made and plotted with actual observed values at 15% and 20% to verify the predictive ability of the proposed DNN-based model. It shows an acceptable estimate of dielectric properties and the effectiveness of the fast and innovative DNN-based approach for predicting soil's dielectric properties depending upon multiple factors.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dielectric behavior of soil as a function of frequency, temperature, moisture content and soil texture: a deep neural networks based regression model\",\"authors\":\"Prachi Palta, Prabhdeep Kaur, K. S. Mann\",\"doi\":\"10.1080/08327823.2022.2103630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Dielectric behavior of soil has utmost applications in microwave remote sensing and soil treatment. In the present study, the soil's dielectric properties (Ɛ' and Ɛ\\\") were measured using the vector network analyzer and an open-ended coaxial probe (85070E, Agilent Technologies) in the region of 0.2 to 14 GHz. The observed results showed that Ɛ' and Ɛ\\\" strongly depend on frequency, texture, moisture content and temperature. A deep neural network (DNN) based multivariable regression model has been developed to model their behavior, using experimentally observed data to learn its parameters automatically. It shows a five-fold cross-validation root mean square errors (RMSE) of 0.0258 and 0.0336, and R2-scores of 1.0000 and 0.9998, between actual recorded and predicted values of Ɛ' and Ɛ\\\", respectively. The results of the proposed DNN-based model have been compared with the response surface method (RSM) based model; among these, the DNN-based model shows significantly better results. Further, the DNN-based estimates of Ɛ' and Ɛ\\\" for loam texture at a moisture content of 18% (i.e. in between observed experiments of 15% and 20%) are made and plotted with actual observed values at 15% and 20% to verify the predictive ability of the proposed DNN-based model. It shows an acceptable estimate of dielectric properties and the effectiveness of the fast and innovative DNN-based approach for predicting soil's dielectric properties depending upon multiple factors.\",\"PeriodicalId\":16556,\"journal\":{\"name\":\"Journal of Microwave Power and Electromagnetic Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwave Power and Electromagnetic Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08327823.2022.2103630\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2022.2103630","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

土壤介电特性在微波遥感和土壤处理中有着广泛的应用。在本研究中,使用矢量网络分析仪和开放式同轴探头(85070E, Agilent Technologies)在0.2至14 GHz区域测量了土壤的介电特性(Ɛ'和Ɛ')。观察结果表明,Ɛ'和Ɛ'与频率、质地、含水量和温度密切相关。建立了基于深度神经网络(DNN)的多变量回归模型来模拟它们的行为,利用实验观测数据自动学习其参数。结果显示,实际记录值Ɛ’和预测值Ɛ’之间的交叉验证均方根误差(RMSE)分别为0.0258和0.0336,r2得分分别为1.0000和0.9998。将该模型与基于响应面法(RSM)的模型进行了比较;其中,基于dnn的模型效果明显更好。此外,对含水率为18%(即在15%和20%之间的观测实验)的壤土质地进行了基于dnn的Ɛ'和Ɛ'估计,并与15%和20%的实际观测值进行了绘制,以验证所提出的基于dnn的模型的预测能力。它显示了一个可接受的介电性质估计和快速和创新的基于dnn的方法的有效性,预测土壤的介电性质取决于多个因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dielectric behavior of soil as a function of frequency, temperature, moisture content and soil texture: a deep neural networks based regression model
Abstract Dielectric behavior of soil has utmost applications in microwave remote sensing and soil treatment. In the present study, the soil's dielectric properties (Ɛ' and Ɛ") were measured using the vector network analyzer and an open-ended coaxial probe (85070E, Agilent Technologies) in the region of 0.2 to 14 GHz. The observed results showed that Ɛ' and Ɛ" strongly depend on frequency, texture, moisture content and temperature. A deep neural network (DNN) based multivariable regression model has been developed to model their behavior, using experimentally observed data to learn its parameters automatically. It shows a five-fold cross-validation root mean square errors (RMSE) of 0.0258 and 0.0336, and R2-scores of 1.0000 and 0.9998, between actual recorded and predicted values of Ɛ' and Ɛ", respectively. The results of the proposed DNN-based model have been compared with the response surface method (RSM) based model; among these, the DNN-based model shows significantly better results. Further, the DNN-based estimates of Ɛ' and Ɛ" for loam texture at a moisture content of 18% (i.e. in between observed experiments of 15% and 20%) are made and plotted with actual observed values at 15% and 20% to verify the predictive ability of the proposed DNN-based model. It shows an acceptable estimate of dielectric properties and the effectiveness of the fast and innovative DNN-based approach for predicting soil's dielectric properties depending upon multiple factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microwave Power and Electromagnetic Energy
Journal of Microwave Power and Electromagnetic Energy ENGINEERING, CHEMICAL-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.50
自引率
6.70%
发文量
21
期刊介绍: The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.
期刊最新文献
Editor’s message: Aspects of composing computational models of microwave processes Dielectric properties of honey-water solutions over broad frequency range Effect of vermicompost additive on physical, chemical and dielectric properties of soil and its modeling Effect of temperature and particle size on dielectric property of vanadium-titanium magnetite The combined effect of active packaging and relative phase sweeping on microwave heating performance in a dual-port solid-state system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1