Jing Wang, Dong-Mei Tang, Qing-Han Yuan, Ben-Xun Su, Wen-Jun Li, Bing-Yu Gao, Zhi-An Bao, Ye Zhao
{"title":"利用 MC-ICP-MS 测量地质认证标准物质中的锌同位素","authors":"Jing Wang, Dong-Mei Tang, Qing-Han Yuan, Ben-Xun Su, Wen-Jun Li, Bing-Yu Gao, Zhi-An Bao, Ye Zhao","doi":"10.1111/ggr.12499","DOIUrl":null,"url":null,"abstract":"<p>Here we present an analytical method for Zinc (Zn) isotopic measurements using “standard-sample bracketing” on a Nu Sapphire multi-collector inductively coupled plasma-mass spectrometer. The effects of Zn mass fraction and HNO<sub>3</sub> molarity mismatch between the standard and the sample, as well as the presence of matrix elements have been evaluated. Long-term reproducibility of better than ±0.03‰ for δ<sup>66</sup>Zn (2<i>s</i>) was routinely obtained. Accurate measurements were achieved when C<sub>Ni</sub>/C<sub>Zn</sub> < 0.001, C<sub>Ti</sub>/C<sub>Zn</sub> < 0.03, C<sub>Ba</sub>/C<sub>Zn</sub> < 0.05, C<sub>Na</sub>/C<sub>Zn</sub> and C<sub>Al</sub>/C<sub>Zn</sub> < 0.5, C<sub>Mg</sub>/C<sub>Zn</sub> < 0.1, C<sub>Fe</sub>/C<sub>Zn</sub> < 5 and C<sub>Cu</sub>/C<sub>Zn</sub> as well as C<sub>Cd</sub>/C<sub>Zn</sub> < 10. High-precision Zn isotopic determination were performed on twenty-one widely available geological certified reference materials, with an overall range of ~ 0.62‰ (0.15 to 1.07‰), which is nearly twenty times the current analytical precision (0.03), and the results are in agreement with most previously published data within 2<i>s</i>. Among them, δ<sup>66</sup>Zn<sub>JMC 3-0749L</sub> of eleven geological certified reference materials are reported for the first time: 0.22 ± 0.03‰ (dolerite, DR-N), 0.23 ± 0.02‰ (gabbro, GSR-10), 0.20 ± 0.04‰ (microgabbro, PM-S), 0.15 ± 0.02‰ (andesite, GSR-2), 0.22 ± 0.08‰ (diorite, GSR-9), 0.19 ± 0.07‰ (syenite, GSR-7), 0.30 ± 0.06‰ (granite, GSR-1), 0.25 ± 0.00‰ (rhyolite, GSR-11), 0.37 ± 0.01‰ (shale, GSR-5), 0.21 ± 0.03‰ (limestone, GSR-6) and 0.20 ± 0.03‰ (hornblendite, GSR-15). The novel Zn isotopic data from these certified reference materials can be used for future interlaboratory comparisons.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"47 4","pages":"969-982"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc Isotope Measurement by MC-ICP-MS in Geological Certified Reference Materials\",\"authors\":\"Jing Wang, Dong-Mei Tang, Qing-Han Yuan, Ben-Xun Su, Wen-Jun Li, Bing-Yu Gao, Zhi-An Bao, Ye Zhao\",\"doi\":\"10.1111/ggr.12499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here we present an analytical method for Zinc (Zn) isotopic measurements using “standard-sample bracketing” on a Nu Sapphire multi-collector inductively coupled plasma-mass spectrometer. The effects of Zn mass fraction and HNO<sub>3</sub> molarity mismatch between the standard and the sample, as well as the presence of matrix elements have been evaluated. Long-term reproducibility of better than ±0.03‰ for δ<sup>66</sup>Zn (2<i>s</i>) was routinely obtained. Accurate measurements were achieved when C<sub>Ni</sub>/C<sub>Zn</sub> < 0.001, C<sub>Ti</sub>/C<sub>Zn</sub> < 0.03, C<sub>Ba</sub>/C<sub>Zn</sub> < 0.05, C<sub>Na</sub>/C<sub>Zn</sub> and C<sub>Al</sub>/C<sub>Zn</sub> < 0.5, C<sub>Mg</sub>/C<sub>Zn</sub> < 0.1, C<sub>Fe</sub>/C<sub>Zn</sub> < 5 and C<sub>Cu</sub>/C<sub>Zn</sub> as well as C<sub>Cd</sub>/C<sub>Zn</sub> < 10. High-precision Zn isotopic determination were performed on twenty-one widely available geological certified reference materials, with an overall range of ~ 0.62‰ (0.15 to 1.07‰), which is nearly twenty times the current analytical precision (0.03), and the results are in agreement with most previously published data within 2<i>s</i>. Among them, δ<sup>66</sup>Zn<sub>JMC 3-0749L</sub> of eleven geological certified reference materials are reported for the first time: 0.22 ± 0.03‰ (dolerite, DR-N), 0.23 ± 0.02‰ (gabbro, GSR-10), 0.20 ± 0.04‰ (microgabbro, PM-S), 0.15 ± 0.02‰ (andesite, GSR-2), 0.22 ± 0.08‰ (diorite, GSR-9), 0.19 ± 0.07‰ (syenite, GSR-7), 0.30 ± 0.06‰ (granite, GSR-1), 0.25 ± 0.00‰ (rhyolite, GSR-11), 0.37 ± 0.01‰ (shale, GSR-5), 0.21 ± 0.03‰ (limestone, GSR-6) and 0.20 ± 0.03‰ (hornblendite, GSR-15). The novel Zn isotopic data from these certified reference materials can be used for future interlaboratory comparisons.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"47 4\",\"pages\":\"969-982\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12499\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12499","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Zinc Isotope Measurement by MC-ICP-MS in Geological Certified Reference Materials
Here we present an analytical method for Zinc (Zn) isotopic measurements using “standard-sample bracketing” on a Nu Sapphire multi-collector inductively coupled plasma-mass spectrometer. The effects of Zn mass fraction and HNO3 molarity mismatch between the standard and the sample, as well as the presence of matrix elements have been evaluated. Long-term reproducibility of better than ±0.03‰ for δ66Zn (2s) was routinely obtained. Accurate measurements were achieved when CNi/CZn < 0.001, CTi/CZn < 0.03, CBa/CZn < 0.05, CNa/CZn and CAl/CZn < 0.5, CMg/CZn < 0.1, CFe/CZn < 5 and CCu/CZn as well as CCd/CZn < 10. High-precision Zn isotopic determination were performed on twenty-one widely available geological certified reference materials, with an overall range of ~ 0.62‰ (0.15 to 1.07‰), which is nearly twenty times the current analytical precision (0.03), and the results are in agreement with most previously published data within 2s. Among them, δ66ZnJMC 3-0749L of eleven geological certified reference materials are reported for the first time: 0.22 ± 0.03‰ (dolerite, DR-N), 0.23 ± 0.02‰ (gabbro, GSR-10), 0.20 ± 0.04‰ (microgabbro, PM-S), 0.15 ± 0.02‰ (andesite, GSR-2), 0.22 ± 0.08‰ (diorite, GSR-9), 0.19 ± 0.07‰ (syenite, GSR-7), 0.30 ± 0.06‰ (granite, GSR-1), 0.25 ± 0.00‰ (rhyolite, GSR-11), 0.37 ± 0.01‰ (shale, GSR-5), 0.21 ± 0.03‰ (limestone, GSR-6) and 0.20 ± 0.03‰ (hornblendite, GSR-15). The novel Zn isotopic data from these certified reference materials can be used for future interlaboratory comparisons.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.