常压等离子体对聚丙烯表面改性的研究

O. Xosocotla, H. Martínez, B. Campillo
{"title":"常压等离子体对聚丙烯表面改性的研究","authors":"O. Xosocotla, H. Martínez, B. Campillo","doi":"10.15415/JNP.2021.82011","DOIUrl":null,"url":null,"abstract":"Received: September 18, 2020 Accepted: January 06, 2021 Published Online: February 10, 2021 In this investigation, we studied the influence of atmospheric pressure plasma treatment on the surface properties of polypropylene (PP). The PP samples were treated for various durations using a gliding arc plasma source with air as a working gas. The formation of polar groups (–OH and C = O) on the PP surface after plasma treatment was evaluated and analyzed using Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy. The contact angle was measured using polar and non-polar liquids to obtain the polar and dispersive components as well as the surface free energy of the PP before and after treatment. A sevenfold increase after treatment was observed for the polar component, while hydrophobicity decreased 73% after treatment. Finally, changes in topography were observed using atomic force microscopy (AFM) analysis before and after plasma treatment. AFM images showed that under atmospheric treatment, the PP surface underwent etching, reducing the surface roughness. Microhardness measurements of the films also revealed significant changes in mechanical properties after plasma treatment.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"111 1","pages":"97-104"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface Modification of Polypropylene by Atmospheric Pressure Plasma\",\"authors\":\"O. Xosocotla, H. Martínez, B. Campillo\",\"doi\":\"10.15415/JNP.2021.82011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: September 18, 2020 Accepted: January 06, 2021 Published Online: February 10, 2021 In this investigation, we studied the influence of atmospheric pressure plasma treatment on the surface properties of polypropylene (PP). The PP samples were treated for various durations using a gliding arc plasma source with air as a working gas. The formation of polar groups (–OH and C = O) on the PP surface after plasma treatment was evaluated and analyzed using Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy. The contact angle was measured using polar and non-polar liquids to obtain the polar and dispersive components as well as the surface free energy of the PP before and after treatment. A sevenfold increase after treatment was observed for the polar component, while hydrophobicity decreased 73% after treatment. Finally, changes in topography were observed using atomic force microscopy (AFM) analysis before and after plasma treatment. AFM images showed that under atmospheric treatment, the PP surface underwent etching, reducing the surface roughness. Microhardness measurements of the films also revealed significant changes in mechanical properties after plasma treatment.\",\"PeriodicalId\":16534,\"journal\":{\"name\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"volume\":\"111 1\",\"pages\":\"97-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15415/JNP.2021.82011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/JNP.2021.82011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们研究了常压等离子体处理对聚丙烯(PP)表面性能的影响。使用以空气为工作气体的滑动电弧等离子体源对PP样品进行不同时间的处理。利用拉曼光谱和衰减全反射-傅里叶变换红外光谱对等离子体处理后PP表面极性基团(-OH和C = O)的形成进行了评价和分析。用极性和非极性液体测量接触角,得到处理前后PP的极性和色散组分以及表面自由能。极性组分在处理后增加了7倍,而疏水性在处理后下降了73%。最后,利用原子力显微镜(AFM)分析等离子体处理前后的形貌变化。AFM图像显示,在大气处理下,PP表面发生蚀刻,表面粗糙度降低。薄膜的显微硬度测量也显示了等离子体处理后力学性能的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Modification of Polypropylene by Atmospheric Pressure Plasma
Received: September 18, 2020 Accepted: January 06, 2021 Published Online: February 10, 2021 In this investigation, we studied the influence of atmospheric pressure plasma treatment on the surface properties of polypropylene (PP). The PP samples were treated for various durations using a gliding arc plasma source with air as a working gas. The formation of polar groups (–OH and C = O) on the PP surface after plasma treatment was evaluated and analyzed using Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy. The contact angle was measured using polar and non-polar liquids to obtain the polar and dispersive components as well as the surface free energy of the PP before and after treatment. A sevenfold increase after treatment was observed for the polar component, while hydrophobicity decreased 73% after treatment. Finally, changes in topography were observed using atomic force microscopy (AFM) analysis before and after plasma treatment. AFM images showed that under atmospheric treatment, the PP surface underwent etching, reducing the surface roughness. Microhardness measurements of the films also revealed significant changes in mechanical properties after plasma treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radii of Thorium Nuclides Lying in Between the Drip Lines Charge Radius And Neutron Skin Thickness Of Platinum And Osmium Isotopes Near The Nuclear Drip Lines Evaluation of Natural Radioactivity Levels and Exhalation rate of 222Rn and 220Rn in the Soil Samples from the Kuthiran Hills, Kerala, India Deformation Effect on Proton Bubble Structure in N = 28 Isotones Phase Shift Analysis for Neutron-Alpha Elastic Scattering Using Phase Function Method with Local Gaussian Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1