{"title":"超声射频信号增强骨表面可视化","authors":"Xu Wen, S. Salcudean","doi":"10.1109/ULTSYM.2007.638","DOIUrl":null,"url":null,"abstract":"Detection of bone surfaces in ultrasound images would be useful for ultrasound guided orthopedic surgery, biopsy and brachytherapy. However, bones are often poorly visualized with conventional B-mode ultrasound due to speckle, shadowing, reverberation and other artifacts in tissue. In this paper, we investigate two new techniques for the enhancement of bone surface visualization using ultrasound radio frequency (RF) signals, instead of using conventional B-mode images. The first approach uses strain imaging or elastography, and the second method directly monitors the reflected power of the RF signal. The potential of the proposed methods is demonstrated through phantom and in vivo experiments. Experimental results show that the two methods produce satisfactory contrast between bone surfaces and soft tissue, and are suitable for real-time applications. The good performance of these approaches suggests that they have promise in a clinical setting.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"110 1","pages":"2535-2538"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"P6D-5 Enhancement of Bone Surface Visualization Using Ultrasound Radio-Frequency Signals\",\"authors\":\"Xu Wen, S. Salcudean\",\"doi\":\"10.1109/ULTSYM.2007.638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of bone surfaces in ultrasound images would be useful for ultrasound guided orthopedic surgery, biopsy and brachytherapy. However, bones are often poorly visualized with conventional B-mode ultrasound due to speckle, shadowing, reverberation and other artifacts in tissue. In this paper, we investigate two new techniques for the enhancement of bone surface visualization using ultrasound radio frequency (RF) signals, instead of using conventional B-mode images. The first approach uses strain imaging or elastography, and the second method directly monitors the reflected power of the RF signal. The potential of the proposed methods is demonstrated through phantom and in vivo experiments. Experimental results show that the two methods produce satisfactory contrast between bone surfaces and soft tissue, and are suitable for real-time applications. The good performance of these approaches suggests that they have promise in a clinical setting.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"110 1\",\"pages\":\"2535-2538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
P6D-5 Enhancement of Bone Surface Visualization Using Ultrasound Radio-Frequency Signals
Detection of bone surfaces in ultrasound images would be useful for ultrasound guided orthopedic surgery, biopsy and brachytherapy. However, bones are often poorly visualized with conventional B-mode ultrasound due to speckle, shadowing, reverberation and other artifacts in tissue. In this paper, we investigate two new techniques for the enhancement of bone surface visualization using ultrasound radio frequency (RF) signals, instead of using conventional B-mode images. The first approach uses strain imaging or elastography, and the second method directly monitors the reflected power of the RF signal. The potential of the proposed methods is demonstrated through phantom and in vivo experiments. Experimental results show that the two methods produce satisfactory contrast between bone surfaces and soft tissue, and are suitable for real-time applications. The good performance of these approaches suggests that they have promise in a clinical setting.