基于联合核稀疏编码的触觉序列分类

Jingwei Yang, Huaping Liu, F. Sun, Meng Gao
{"title":"基于联合核稀疏编码的触觉序列分类","authors":"Jingwei Yang, Huaping Liu, F. Sun, Meng Gao","doi":"10.1109/IJCNN.2015.7280512","DOIUrl":null,"url":null,"abstract":"Tactile sensors in the robotic fingertips are used to capture multiple object properties such as texture, roughness, spatial features, compliance or friction and therefore becomes a very important sense modality for intelligent robot. However, existing work neglects the intrinsic relation between different fingers which simultaneously contact the object. In this paper, a joint kernel sparse coding model is developed to tackle the multi-finger tactile sequence classification problem. In this model, the intrinsic relations between fingers are explicitly considered using the joint sparse coding which encourages different modal coding to share the same support. The experimental results show that the joint sparse coding achieves better performance than conventional sparse coding.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Tactile sequence classification using joint kernel sparse coding\",\"authors\":\"Jingwei Yang, Huaping Liu, F. Sun, Meng Gao\",\"doi\":\"10.1109/IJCNN.2015.7280512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile sensors in the robotic fingertips are used to capture multiple object properties such as texture, roughness, spatial features, compliance or friction and therefore becomes a very important sense modality for intelligent robot. However, existing work neglects the intrinsic relation between different fingers which simultaneously contact the object. In this paper, a joint kernel sparse coding model is developed to tackle the multi-finger tactile sequence classification problem. In this model, the intrinsic relations between fingers are explicitly considered using the joint sparse coding which encourages different modal coding to share the same support. The experimental results show that the joint sparse coding achieves better performance than conventional sparse coding.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"15 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

机器人指尖的触觉传感器用于捕捉物体的纹理、粗糙度、空间特征、顺应性或摩擦力等多种属性,因此成为智能机器人非常重要的感知方式。然而,现有的工作忽略了同时接触物体的不同手指之间的内在联系。针对多指触觉序列分类问题,提出了一种联合核稀疏编码模型。该模型采用联合稀疏编码,明确考虑了手指间的内在关系,使不同模态编码共享相同的支持度。实验结果表明,联合稀疏编码比常规稀疏编码具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tactile sequence classification using joint kernel sparse coding
Tactile sensors in the robotic fingertips are used to capture multiple object properties such as texture, roughness, spatial features, compliance or friction and therefore becomes a very important sense modality for intelligent robot. However, existing work neglects the intrinsic relation between different fingers which simultaneously contact the object. In this paper, a joint kernel sparse coding model is developed to tackle the multi-finger tactile sequence classification problem. In this model, the intrinsic relations between fingers are explicitly considered using the joint sparse coding which encourages different modal coding to share the same support. The experimental results show that the joint sparse coding achieves better performance than conventional sparse coding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1