Y. Semertzidis, V. Castillo, R. Larsen, D. M. Lazatus, B. Magurno, T. Srinivasan-Rao, T. Tsang, V. Usack, L. Kowalski, D. E. Kraus
{"title":"带电粒子束的光电探测","authors":"Y. Semertzidis, V. Castillo, R. Larsen, D. M. Lazatus, B. Magurno, T. Srinivasan-Rao, T. Tsang, V. Usack, L. Kowalski, D. E. Kraus","doi":"10.1109/PAC.1999.795740","DOIUrl":null,"url":null,"abstract":"We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO/sub 3/ crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10 ps bunches of 1 mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45 GHz bandwidth. The fastest rise time measured, 120 ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":"20 1","pages":"490-491 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electro-optical detection of charged particle beams\",\"authors\":\"Y. Semertzidis, V. Castillo, R. Larsen, D. M. Lazatus, B. Magurno, T. Srinivasan-Rao, T. Tsang, V. Usack, L. Kowalski, D. E. Kraus\",\"doi\":\"10.1109/PAC.1999.795740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO/sub 3/ crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10 ps bunches of 1 mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45 GHz bandwidth. The fastest rise time measured, 120 ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":\"20 1\",\"pages\":\"490-491 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.795740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.795740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electro-optical detection of charged particle beams
We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO/sub 3/ crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10 ps bunches of 1 mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45 GHz bandwidth. The fastest rise time measured, 120 ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.