一个具有拓扑感知PSO的并行优化框架及其应用

S. Sreepathi
{"title":"一个具有拓扑感知PSO的并行优化框架及其应用","authors":"S. Sreepathi","doi":"10.1109/SC.Companion.2012.303","DOIUrl":null,"url":null,"abstract":"This research presents a parallel metaheuristic optimization framework, Optimus (Optimization Methods for Universal Simulators) for integration of a desired population-based search method with a target scientific application. Optimus includes a parallel middleware component, PRIME (Parallel Reconfigurable Iterative Middleware Engine) for scalable deployment on emergent supercomputing architectures. Additionally, we designed TAPSO (Topology Aware Particle Swarm Optimization) for network based optimization problems and applied it to achieve better convergence for water distribution system (WDS) applications. The framework supports concurrent optimization instances, for instance multiple swarms in the case of PSO. PRIME provides a lightweight communication layer to facilitate periodic inter-optimizer data exchanges. We performed scalability analysis of Optimus on Cray XK6(Jaguar) at Oak Ridge Leadership Computing Facility for the leak detection problem in WDS. For a weak scaling scenario, we achieved 84.82% of baseline at 200,000 cores relative to performance at 1000 cores and 72.84% relative to one core scenario.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"6 1","pages":"1524-1525"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimus: A Parallel Optimization Framework with Topology Aware PSO and Applications\",\"authors\":\"S. Sreepathi\",\"doi\":\"10.1109/SC.Companion.2012.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a parallel metaheuristic optimization framework, Optimus (Optimization Methods for Universal Simulators) for integration of a desired population-based search method with a target scientific application. Optimus includes a parallel middleware component, PRIME (Parallel Reconfigurable Iterative Middleware Engine) for scalable deployment on emergent supercomputing architectures. Additionally, we designed TAPSO (Topology Aware Particle Swarm Optimization) for network based optimization problems and applied it to achieve better convergence for water distribution system (WDS) applications. The framework supports concurrent optimization instances, for instance multiple swarms in the case of PSO. PRIME provides a lightweight communication layer to facilitate periodic inter-optimizer data exchanges. We performed scalability analysis of Optimus on Cray XK6(Jaguar) at Oak Ridge Leadership Computing Facility for the leak detection problem in WDS. For a weak scaling scenario, we achieved 84.82% of baseline at 200,000 cores relative to performance at 1000 cores and 72.84% relative to one core scenario.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"6 1\",\"pages\":\"1524-1525\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究提出了一个并行的元启发式优化框架,Optimus(通用模拟器优化方法),用于集成基于期望人群的搜索方法和目标科学应用。Optimus包含一个并行中间件组件,PRIME(并行可重构迭代中间件引擎),用于在紧急超级计算架构上进行可伸缩部署。此外,我们针对网络优化问题设计了拓扑感知粒子群优化算法(TAPSO),并将其应用于配水系统(WDS)应用中,以达到更好的收敛性。该框架支持并发优化实例,例如PSO中的多个集群。PRIME提供了一个轻量级的通信层来促进周期性的优化器间数据交换。针对WDS中的泄漏检测问题,我们在Oak Ridge Leadership Computing Facility的Cray XK6(Jaguar)上对Optimus进行了可伸缩性分析。对于弱扩展场景,相对于1000核,我们在20万核时实现了84.82%的基准性能,相对于1核场景,我们实现了72.84%的基准性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimus: A Parallel Optimization Framework with Topology Aware PSO and Applications
This research presents a parallel metaheuristic optimization framework, Optimus (Optimization Methods for Universal Simulators) for integration of a desired population-based search method with a target scientific application. Optimus includes a parallel middleware component, PRIME (Parallel Reconfigurable Iterative Middleware Engine) for scalable deployment on emergent supercomputing architectures. Additionally, we designed TAPSO (Topology Aware Particle Swarm Optimization) for network based optimization problems and applied it to achieve better convergence for water distribution system (WDS) applications. The framework supports concurrent optimization instances, for instance multiple swarms in the case of PSO. PRIME provides a lightweight communication layer to facilitate periodic inter-optimizer data exchanges. We performed scalability analysis of Optimus on Cray XK6(Jaguar) at Oak Ridge Leadership Computing Facility for the leak detection problem in WDS. For a weak scaling scenario, we achieved 84.82% of baseline at 200,000 cores relative to performance at 1000 cores and 72.84% relative to one core scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1