从多个图像三维重建:第1部分-原则

IF 3.8 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Foundations and Trends in Computer Graphics and Vision Pub Date : 2009-10-23 DOI:10.1561/0600000007
T. Moons, L. Gool, M. Vergauwen
{"title":"从多个图像三维重建:第1部分-原则","authors":"T. Moons, L. Gool, M. Vergauwen","doi":"10.1561/0600000007","DOIUrl":null,"url":null,"abstract":"This issue discusses methods to extract three-dimensional (3D) models from plain images. In particular, the 3D information is obtained from images for which the camera parameters are unknown. The principles underlying such uncalibrated structure-from-motion methods are outlined. First, a short review of 3D acquisition technologies puts such methods in a wider context and highlights their important advantages. Then, the actual theory behind this line of research is given. The authors have tried to keep the text maximally self-contained, therefore also avoiding to rely on an extensive knowledge of the projective concepts that usually appear in texts about self-calibration 3D methods. Rather, mathematical explanations that are more amenable to intuition are given. The explanation of the theory includes the stratification of reconstructions obtained from image pairs as well as metric reconstruction on the basis of more than two images combined with some additional knowledge about the cameras used. Readers who want to obtain more practical information about how to implement such uncalibrated structure-from-motion pipelines may be interested in two more Foundations and Trends issues written by the same authors. Together with this issue they can be read as a single tutorial on the subject.","PeriodicalId":45662,"journal":{"name":"Foundations and Trends in Computer Graphics and Vision","volume":"14 1","pages":"287-404"},"PeriodicalIF":3.8000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"3D Reconstruction from Multiple Images: Part 1 - Principles\",\"authors\":\"T. Moons, L. Gool, M. Vergauwen\",\"doi\":\"10.1561/0600000007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This issue discusses methods to extract three-dimensional (3D) models from plain images. In particular, the 3D information is obtained from images for which the camera parameters are unknown. The principles underlying such uncalibrated structure-from-motion methods are outlined. First, a short review of 3D acquisition technologies puts such methods in a wider context and highlights their important advantages. Then, the actual theory behind this line of research is given. The authors have tried to keep the text maximally self-contained, therefore also avoiding to rely on an extensive knowledge of the projective concepts that usually appear in texts about self-calibration 3D methods. Rather, mathematical explanations that are more amenable to intuition are given. The explanation of the theory includes the stratification of reconstructions obtained from image pairs as well as metric reconstruction on the basis of more than two images combined with some additional knowledge about the cameras used. Readers who want to obtain more practical information about how to implement such uncalibrated structure-from-motion pipelines may be interested in two more Foundations and Trends issues written by the same authors. Together with this issue they can be read as a single tutorial on the subject.\",\"PeriodicalId\":45662,\"journal\":{\"name\":\"Foundations and Trends in Computer Graphics and Vision\",\"volume\":\"14 1\",\"pages\":\"287-404\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2009-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Computer Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/0600000007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Computer Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0600000007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 130

摘要

本文讨论了从平面图像中提取三维模型的方法。特别是,从相机参数未知的图像中获得三维信息。本文概述了这种未经校准的运动构造方法的基本原理。首先,对3D采集技术的简短回顾将这些方法置于更广泛的背景下,并突出了它们的重要优势。然后,给出了这条研究路线背后的实际理论。作者试图保持文本最大限度地自给自足,因此也避免依赖于投影概念的广泛知识,通常出现在文本中关于自校准3D方法。相反,给出了更符合直觉的数学解释。该理论的解释包括从图像对中获得的重建分层,以及基于两个以上图像并结合有关所使用相机的一些额外知识的度量重建。想要获得更多关于如何实现这种未校准的运动结构管道的实用信息的读者可能会对同一作者撰写的另外两个基础和趋势问题感兴趣。和这个问题一起,它们可以作为一个关于这个主题的教程来阅读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Reconstruction from Multiple Images: Part 1 - Principles
This issue discusses methods to extract three-dimensional (3D) models from plain images. In particular, the 3D information is obtained from images for which the camera parameters are unknown. The principles underlying such uncalibrated structure-from-motion methods are outlined. First, a short review of 3D acquisition technologies puts such methods in a wider context and highlights their important advantages. Then, the actual theory behind this line of research is given. The authors have tried to keep the text maximally self-contained, therefore also avoiding to rely on an extensive knowledge of the projective concepts that usually appear in texts about self-calibration 3D methods. Rather, mathematical explanations that are more amenable to intuition are given. The explanation of the theory includes the stratification of reconstructions obtained from image pairs as well as metric reconstruction on the basis of more than two images combined with some additional knowledge about the cameras used. Readers who want to obtain more practical information about how to implement such uncalibrated structure-from-motion pipelines may be interested in two more Foundations and Trends issues written by the same authors. Together with this issue they can be read as a single tutorial on the subject.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Computer Graphics and Vision
Foundations and Trends in Computer Graphics and Vision COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
31.20
自引率
0.00%
发文量
1
期刊介绍: The growth in all aspects of research in the last decade has led to a multitude of new publications and an exponential increase in published research. Finding a way through the excellent existing literature and keeping up to date has become a major time-consuming problem. Electronic publishing has given researchers instant access to more articles than ever before. But which articles are the essential ones that should be read to understand and keep abreast with developments of any topic? To address this problem Foundations and Trends® in Computer Graphics and Vision publishes high-quality survey and tutorial monographs of the field. Each issue of Foundations and Trends® in Computer Graphics and Vision comprises a 50-100 page monograph written by research leaders in the field. Monographs that give tutorial coverage of subjects, research retrospectives as well as survey papers that offer state-of-the-art reviews fall within the scope of the journal.
期刊最新文献
Semantic Image Segmentation: Two Decades of Research Learning-based Visual Compression Computational Imaging Through Atmospheric Turbulence Vision-Language Pre-training: Basics, Recent Advances, and Future Trends Towards Better User Studies in Computer Graphics and Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1