D. Hernandez-Rajkov, J. E. Padilla-Castillo, M. Mendoza-López, R. Col'in-Rodr'iguez, A. Gutiérrez-Valdés, S. A. Morales-Ram'irez, R. A. Guti'errez-Arenas, C. A. Gardea-Flores, R. Jáuregui-Renaud, J. A. Seman, F. J. Poveda-Cuevas, G. Roati
{"title":"产生6Li超冷强相关费米子超流体的实验装置","authors":"D. Hernandez-Rajkov, J. E. Padilla-Castillo, M. Mendoza-López, R. Col'in-Rodr'iguez, A. Gutiérrez-Valdés, S. A. Morales-Ram'irez, R. A. Guti'errez-Arenas, C. A. Gardea-Flores, R. Jáuregui-Renaud, J. A. Seman, F. J. Poveda-Cuevas, G. Roati","doi":"10.31349/RevMexFis.66.388","DOIUrl":null,"url":null,"abstract":"We present our experimental setup to produce ultracold strongly correlated fermionic superfluids made of a two-component spin-mixture of $^6$Li atoms. Employing standard cooling techniques, we achieve quantum degeneracy in a single-beam optical dipole trap. Our setup is capable of generating spin-balanced samples at temperatures as low as $T/T_F = 0.1$ containing up to $5 \\times 10^4$ atomic pairs. We can access different superfluid regimes by tuning the interparticle interactions close to a broad magnetic Feshbach resonance. In particular, we are able to explore the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regimes.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental setup for the production of ultracold strongly correlated fermionic superfluids of 6Li\",\"authors\":\"D. Hernandez-Rajkov, J. E. Padilla-Castillo, M. Mendoza-López, R. Col'in-Rodr'iguez, A. Gutiérrez-Valdés, S. A. Morales-Ram'irez, R. A. Guti'errez-Arenas, C. A. Gardea-Flores, R. Jáuregui-Renaud, J. A. Seman, F. J. Poveda-Cuevas, G. Roati\",\"doi\":\"10.31349/RevMexFis.66.388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our experimental setup to produce ultracold strongly correlated fermionic superfluids made of a two-component spin-mixture of $^6$Li atoms. Employing standard cooling techniques, we achieve quantum degeneracy in a single-beam optical dipole trap. Our setup is capable of generating spin-balanced samples at temperatures as low as $T/T_F = 0.1$ containing up to $5 \\\\times 10^4$ atomic pairs. We can access different superfluid regimes by tuning the interparticle interactions close to a broad magnetic Feshbach resonance. In particular, we are able to explore the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regimes.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/RevMexFis.66.388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/RevMexFis.66.388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental setup for the production of ultracold strongly correlated fermionic superfluids of 6Li
We present our experimental setup to produce ultracold strongly correlated fermionic superfluids made of a two-component spin-mixture of $^6$Li atoms. Employing standard cooling techniques, we achieve quantum degeneracy in a single-beam optical dipole trap. Our setup is capable of generating spin-balanced samples at temperatures as low as $T/T_F = 0.1$ containing up to $5 \times 10^4$ atomic pairs. We can access different superfluid regimes by tuning the interparticle interactions close to a broad magnetic Feshbach resonance. In particular, we are able to explore the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regimes.