固相反应法制备镨改性钛酸铅陶瓷的力学行为和断裂力学

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of Advanced Ceramics Pub Date : 2013-08-29 DOI:10.1155/2013/280605
Vishal Singh, Shivani Suri, K. Bamzai
{"title":"固相反应法制备镨改性钛酸铅陶瓷的力学行为和断裂力学","authors":"Vishal Singh, Shivani Suri, K. Bamzai","doi":"10.1155/2013/280605","DOIUrl":null,"url":null,"abstract":"The praseodymium modified lead titanate ceramics with composition where = 0.04, 0.06, 0.08, and 0.10 prepared by solid-state reaction technique were subjected to indentation induced hardness testing method. The indentations were induced in the applied load ranging from 0.245 N to 4.90 N. The microhardness varies nonlinearly with load and was best explained by the concept of Newtonian resistance pressure as proposed by Hays and Kendall’s law. Crack propagation, fracture toughness (), brittleness index (), and yield strength () were studied to understand the effect of Pr content on various mechanical parameters. The load independent values were found to increase with the increase in praseodymium content.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"45 1","pages":"1-9"},"PeriodicalIF":18.6000,"publicationDate":"2013-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mechanical Behaviour and Fracture Mechanics of Praseodymium Modified Lead Titanate Ceramics Prepared by Solid-State Reaction Route\",\"authors\":\"Vishal Singh, Shivani Suri, K. Bamzai\",\"doi\":\"10.1155/2013/280605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The praseodymium modified lead titanate ceramics with composition where = 0.04, 0.06, 0.08, and 0.10 prepared by solid-state reaction technique were subjected to indentation induced hardness testing method. The indentations were induced in the applied load ranging from 0.245 N to 4.90 N. The microhardness varies nonlinearly with load and was best explained by the concept of Newtonian resistance pressure as proposed by Hays and Kendall’s law. Crack propagation, fracture toughness (), brittleness index (), and yield strength () were studied to understand the effect of Pr content on various mechanical parameters. The load independent values were found to increase with the increase in praseodymium content.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"45 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2013-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/280605\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/280605","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 6

摘要

采用固相反应法制备了组成= 0.04,0.06,0.08,0.10的镨改性钛酸铅陶瓷,采用压痕诱发硬度测试方法。在0.245 ~ 4.90 N的载荷范围内产生了压痕。显微硬度随载荷呈非线性变化,最好用Hays和Kendall定律提出的牛顿阻力压力概念来解释。研究了裂纹扩展、断裂韧性()、脆性指数()和屈服强度(),了解了Pr含量对各力学参数的影响。负载无关值随着镨含量的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Behaviour and Fracture Mechanics of Praseodymium Modified Lead Titanate Ceramics Prepared by Solid-State Reaction Route
The praseodymium modified lead titanate ceramics with composition where = 0.04, 0.06, 0.08, and 0.10 prepared by solid-state reaction technique were subjected to indentation induced hardness testing method. The indentations were induced in the applied load ranging from 0.245 N to 4.90 N. The microhardness varies nonlinearly with load and was best explained by the concept of Newtonian resistance pressure as proposed by Hays and Kendall’s law. Crack propagation, fracture toughness (), brittleness index (), and yield strength () were studied to understand the effect of Pr content on various mechanical parameters. The load independent values were found to increase with the increase in praseodymium content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
期刊最新文献
Preparation and properties of Ti 3SiC 2-based corrosion mitigation coatings for SiC f/SiC PWR accident tolerant fuel cladding Toughened (Ti 0.2Zr 0.2Hf 0.2Nb 0.2Ta 0.2)B 2–SiC composites fabricated by one-step reactive sintering with a unique SiB 6 additive Sn-doped cobalt containing perovskite as the air electrode for highly active and durable reversible protonic ceramic electrochemical cells Composite structure Al 2O 3/Al 2O 3–YAG:Ce/YAG ceramics with high color spatial uniformity for white laser lighting Influence of nano-mechanical evolution of Ti 3AlC 2 ceramic on the arc erosion resistance of Ag-based composite electrical contact material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1