{"title":"利用光纤分布式温度传感和生产测井进行油井完整性泄漏诊断","authors":"Joerg Abeling, U. Bartels, Kamaljeet Singh, Shaktim Dutta, Gaurav Agrawal, Apoorva Kumar","doi":"10.2118/204557-ms","DOIUrl":null,"url":null,"abstract":"\n Fiber optics has many applications in the oil and gas industry. In recent years, fiber optics has found usefulness in leak detection. The leaks can be efficiently identified using fiber-optic distributed temperature sensing measurement, thereby mitigating the health, safety, and environmental (HSE) risk associated with well integrity. Further, a production log can be used to gain more insight and finalize a way ahead to resolve well integrity issues.\n An innovative solution-driven approach was defined, with fiber-optic distributed measurement playing a key role. Multiple leaks were suspected in the well completion, and a fiber-optic cable was run to identify possible areas of the leak path. After the fiber-optic data acquisition, a production log was recorded across selective depths to provide an insight on leak paths. After identifying leak depths, a definitive decision between tubular patching and production system overhaul was decided based on combined outputs of the fiber-optic acquisition and production log.\n Results are presented for a well where multiple leaks were successfully identified using the novel operational approach. Further, operational time was reduced from 3 days (conventional slickline memory or e-line logging performed during daylight operation) to 1 day (a combination of fiber-optic distributed temperature sensing and production log in a single run). The diagnosis of production system issues was completed in one shut-in and one flowing condition, thereby reducing the risk of HSE exposure with multiple flowing conditions (to simulate the leak while the conventional production logging tool is moved to different depths in the well). Additional insight on leak quantification was confirmed from the production log data, where one leak was noted at the tubing collar while the other leak was noted a few meters above the tubing collar. This observation was substantial in deciding whether to proceed with tubing patch or replace the entire production tubing.\n The novel operational approach affirms fiber-optic distributed temperature measurement's versatility in solving critical issues of operation time and reducing HSE exposure while delivering decisive information on production system issues. The paper serves as a staging area for other applications of similar nature to unlock even wider horizons for distributed temperature sensing measurement.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well Integrity Leak Diagnostic Using Fiber-Optic Distributed Temperature Sensing and Production Logging\",\"authors\":\"Joerg Abeling, U. Bartels, Kamaljeet Singh, Shaktim Dutta, Gaurav Agrawal, Apoorva Kumar\",\"doi\":\"10.2118/204557-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fiber optics has many applications in the oil and gas industry. In recent years, fiber optics has found usefulness in leak detection. The leaks can be efficiently identified using fiber-optic distributed temperature sensing measurement, thereby mitigating the health, safety, and environmental (HSE) risk associated with well integrity. Further, a production log can be used to gain more insight and finalize a way ahead to resolve well integrity issues.\\n An innovative solution-driven approach was defined, with fiber-optic distributed measurement playing a key role. Multiple leaks were suspected in the well completion, and a fiber-optic cable was run to identify possible areas of the leak path. After the fiber-optic data acquisition, a production log was recorded across selective depths to provide an insight on leak paths. After identifying leak depths, a definitive decision between tubular patching and production system overhaul was decided based on combined outputs of the fiber-optic acquisition and production log.\\n Results are presented for a well where multiple leaks were successfully identified using the novel operational approach. Further, operational time was reduced from 3 days (conventional slickline memory or e-line logging performed during daylight operation) to 1 day (a combination of fiber-optic distributed temperature sensing and production log in a single run). The diagnosis of production system issues was completed in one shut-in and one flowing condition, thereby reducing the risk of HSE exposure with multiple flowing conditions (to simulate the leak while the conventional production logging tool is moved to different depths in the well). Additional insight on leak quantification was confirmed from the production log data, where one leak was noted at the tubing collar while the other leak was noted a few meters above the tubing collar. This observation was substantial in deciding whether to proceed with tubing patch or replace the entire production tubing.\\n The novel operational approach affirms fiber-optic distributed temperature measurement's versatility in solving critical issues of operation time and reducing HSE exposure while delivering decisive information on production system issues. The paper serves as a staging area for other applications of similar nature to unlock even wider horizons for distributed temperature sensing measurement.\",\"PeriodicalId\":11320,\"journal\":{\"name\":\"Day 3 Tue, November 30, 2021\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Tue, November 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204557-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204557-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Well Integrity Leak Diagnostic Using Fiber-Optic Distributed Temperature Sensing and Production Logging
Fiber optics has many applications in the oil and gas industry. In recent years, fiber optics has found usefulness in leak detection. The leaks can be efficiently identified using fiber-optic distributed temperature sensing measurement, thereby mitigating the health, safety, and environmental (HSE) risk associated with well integrity. Further, a production log can be used to gain more insight and finalize a way ahead to resolve well integrity issues.
An innovative solution-driven approach was defined, with fiber-optic distributed measurement playing a key role. Multiple leaks were suspected in the well completion, and a fiber-optic cable was run to identify possible areas of the leak path. After the fiber-optic data acquisition, a production log was recorded across selective depths to provide an insight on leak paths. After identifying leak depths, a definitive decision between tubular patching and production system overhaul was decided based on combined outputs of the fiber-optic acquisition and production log.
Results are presented for a well where multiple leaks were successfully identified using the novel operational approach. Further, operational time was reduced from 3 days (conventional slickline memory or e-line logging performed during daylight operation) to 1 day (a combination of fiber-optic distributed temperature sensing and production log in a single run). The diagnosis of production system issues was completed in one shut-in and one flowing condition, thereby reducing the risk of HSE exposure with multiple flowing conditions (to simulate the leak while the conventional production logging tool is moved to different depths in the well). Additional insight on leak quantification was confirmed from the production log data, where one leak was noted at the tubing collar while the other leak was noted a few meters above the tubing collar. This observation was substantial in deciding whether to proceed with tubing patch or replace the entire production tubing.
The novel operational approach affirms fiber-optic distributed temperature measurement's versatility in solving critical issues of operation time and reducing HSE exposure while delivering decisive information on production system issues. The paper serves as a staging area for other applications of similar nature to unlock even wider horizons for distributed temperature sensing measurement.