{"title":"基于进化计算的SVM模型自动选择","authors":"Yingqin Zhang","doi":"10.1109/ICNC.2008.4","DOIUrl":null,"url":null,"abstract":"SVM performance is very sensitive to the parameter set. In this paper we propose an automatic and effective model selection method. It is based on evolutionary computation algorithms and use recall, precision and error rate estimated by xialpha-estimate as the optimization targets. Optimized by genetic algorithm (GA) or particle swarm optimization (PSO) algorithm, we demonstrate that SVM could automatically select its multiple parameters and optimize them. Experiments results also verify that by optimizing the bounds estimated by xialpha-estimate we could also improve the practical performance.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"32 1","pages":"66-70"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evolutionary Computation Based Automatic SVM Model Selection\",\"authors\":\"Yingqin Zhang\",\"doi\":\"10.1109/ICNC.2008.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SVM performance is very sensitive to the parameter set. In this paper we propose an automatic and effective model selection method. It is based on evolutionary computation algorithms and use recall, precision and error rate estimated by xialpha-estimate as the optimization targets. Optimized by genetic algorithm (GA) or particle swarm optimization (PSO) algorithm, we demonstrate that SVM could automatically select its multiple parameters and optimize them. Experiments results also verify that by optimizing the bounds estimated by xialpha-estimate we could also improve the practical performance.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"32 1\",\"pages\":\"66-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary Computation Based Automatic SVM Model Selection
SVM performance is very sensitive to the parameter set. In this paper we propose an automatic and effective model selection method. It is based on evolutionary computation algorithms and use recall, precision and error rate estimated by xialpha-estimate as the optimization targets. Optimized by genetic algorithm (GA) or particle swarm optimization (PSO) algorithm, we demonstrate that SVM could automatically select its multiple parameters and optimize them. Experiments results also verify that by optimizing the bounds estimated by xialpha-estimate we could also improve the practical performance.