跨模态深度变分哈希

Venice Erin Liong, Jiwen Lu, Yap-Peng Tan, Jie Zhou
{"title":"跨模态深度变分哈希","authors":"Venice Erin Liong, Jiwen Lu, Yap-Peng Tan, Jie Zhou","doi":"10.1109/ICCV.2017.439","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a cross-modal deep variational hashing (CMDVH) method for cross-modality multimedia retrieval. Unlike existing cross-modal hashing methods which learn a single pair of projections to map each example as a binary vector, we design a couple of deep neural network to learn non-linear transformations from image-text input pairs, so that unified binary codes can be obtained. We then design the modality-specific neural networks in a probabilistic manner where we model a latent variable as close as possible from the inferred binary codes, which is approximated by a posterior distribution regularized by a known prior. Experimental results on three benchmark datasets show the efficacy of the proposed approach.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"18 1","pages":"4097-4105"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Cross-Modal Deep Variational Hashing\",\"authors\":\"Venice Erin Liong, Jiwen Lu, Yap-Peng Tan, Jie Zhou\",\"doi\":\"10.1109/ICCV.2017.439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a cross-modal deep variational hashing (CMDVH) method for cross-modality multimedia retrieval. Unlike existing cross-modal hashing methods which learn a single pair of projections to map each example as a binary vector, we design a couple of deep neural network to learn non-linear transformations from image-text input pairs, so that unified binary codes can be obtained. We then design the modality-specific neural networks in a probabilistic manner where we model a latent variable as close as possible from the inferred binary codes, which is approximated by a posterior distribution regularized by a known prior. Experimental results on three benchmark datasets show the efficacy of the proposed approach.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"18 1\",\"pages\":\"4097-4105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

本文提出了一种跨模态深度变分哈希(CMDVH)方法用于跨模态多媒体检索。与现有的跨模态哈希方法不同,我们设计了一对深度神经网络来学习图像-文本输入对的非线性变换,从而获得统一的二进制代码。然后,我们以概率方式设计模态特定的神经网络,其中我们根据推断的二进制代码尽可能接近地建模潜在变量,这是由已知先验正则化的后验分布近似的。在三个基准数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Modal Deep Variational Hashing
In this paper, we propose a cross-modal deep variational hashing (CMDVH) method for cross-modality multimedia retrieval. Unlike existing cross-modal hashing methods which learn a single pair of projections to map each example as a binary vector, we design a couple of deep neural network to learn non-linear transformations from image-text input pairs, so that unified binary codes can be obtained. We then design the modality-specific neural networks in a probabilistic manner where we model a latent variable as close as possible from the inferred binary codes, which is approximated by a posterior distribution regularized by a known prior. Experimental results on three benchmark datasets show the efficacy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1