用于海事监测的流推理系统

Time Pub Date : 2018-01-01 DOI:10.4230/LIPIcs.TIME.2018.20
Georgios M. Santipantakis, Akrivi Vlachou, C. Doulkeridis, A. Artikis, Ioannis Kontopoulos, G. Vouros
{"title":"用于海事监测的流推理系统","authors":"Georgios M. Santipantakis, Akrivi Vlachou, C. Doulkeridis, A. Artikis, Ioannis Kontopoulos, G. Vouros","doi":"10.4230/LIPIcs.TIME.2018.20","DOIUrl":null,"url":null,"abstract":"We present a stream reasoning system for monitoring vessel activity in large geographical areas. The system ingests a compressed vessel position stream, and performs online spatio-temporal link discovery to calculate proximity relations between vessels, and topological relations between vessel and static areas. Capitalizing on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate the effects of the highly efficient spatio-temporal link discovery on performance.","PeriodicalId":75226,"journal":{"name":"Time","volume":"65 1","pages":"20:1-20:17"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A Stream Reasoning System for Maritime Monitoring\",\"authors\":\"Georgios M. Santipantakis, Akrivi Vlachou, C. Doulkeridis, A. Artikis, Ioannis Kontopoulos, G. Vouros\",\"doi\":\"10.4230/LIPIcs.TIME.2018.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a stream reasoning system for monitoring vessel activity in large geographical areas. The system ingests a compressed vessel position stream, and performs online spatio-temporal link discovery to calculate proximity relations between vessels, and topological relations between vessel and static areas. Capitalizing on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate the effects of the highly efficient spatio-temporal link discovery on performance.\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"65 1\",\"pages\":\"20:1-20:17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2018.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2018.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种用于监测大地理区域内船舶活动的流推理系统。该系统摄取压缩的船舶位置流,并执行在线时空链路发现,以计算船舶之间的接近关系以及船舶与静态区域之间的拓扑关系。利用发现的关系,基于事件演算的复杂活动识别引擎执行连续的模式匹配,以检测各种类型的危险、可疑和潜在的非法船只活动。我们通过包括船舶运动信息在内的真实数据集来评估系统的性能,并演示了高效的时空链路发现对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Stream Reasoning System for Maritime Monitoring
We present a stream reasoning system for monitoring vessel activity in large geographical areas. The system ingests a compressed vessel position stream, and performs online spatio-temporal link discovery to calculate proximity relations between vessels, and topological relations between vessel and static areas. Capitalizing on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate the effects of the highly efficient spatio-temporal link discovery on performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early Detection of Temporal Constraint Violations LSCPM: communities in massive real-world Link Streams by Clique Percolation Method Taming Strategy Logic: Non-Recurrent Fragments Realizability Problem for Constraint LTL Logical Forms of Chronicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1