{"title":"基于混合模糊和改进骑手优化算法的物联网无线体域网络节能聚类和路由","authors":"D. A, Rangaraj J","doi":"10.53759/7669/jmc202303016","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks are widely used in various Internet of Things applications, including healthcare, underwater sensor networks, body area networks, and multiple offices. Wireless Body Area Network (WBAN) simplifies medical department tasks and provides a solution that reduces the possibility of errors in the medical diagnostic process. The growing demand for real-time applications in such networks will stimulate significant research activity. Designing scenarios for such critical events while maintaining energy efficiency is difficult due to dynamic changes in network topology, strict power constraints, and limited computing power. The routing protocol design becomes crucial to WBAN and significantly impacts the communication stack and network performance. High node mobility in WBAN results in quick topology changes, affecting network scalability. Node clustering is one of many other mechanisms used in WBANs to address this issue. We consider optimization factors like distance, latency, and power consumption of IoT devices to achieve the desired CH selection. This paper proposes a high-level CH selection and routing approach using a hybrid fuzzy with a modified Rider Optimization Algorithm (MROA). This research work is implemented using MATLAB software. The simulations are carried out under a range of conditions. In terms of energy consumption and network life time, the proposed scheme outperforms current state-of-the-art techniques like Low Energy Adaptive Clustering Hierarchy (LEACH), Energy Control Routing Algorithm (ECCRA), Energy Efficient Routing Protocol (EERP), and Simplified Energy Balancing Alternative Aware Routing Algorithm (SEAR).","PeriodicalId":91709,"journal":{"name":"International journal of machine learning and computing","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Efficient Clustering and Routing Using Hybrid Fuzzy with Modified Rider Optimization Algorithm in IoT - Enabled Wireless Body Area Network\",\"authors\":\"D. A, Rangaraj J\",\"doi\":\"10.53759/7669/jmc202303016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks are widely used in various Internet of Things applications, including healthcare, underwater sensor networks, body area networks, and multiple offices. Wireless Body Area Network (WBAN) simplifies medical department tasks and provides a solution that reduces the possibility of errors in the medical diagnostic process. The growing demand for real-time applications in such networks will stimulate significant research activity. Designing scenarios for such critical events while maintaining energy efficiency is difficult due to dynamic changes in network topology, strict power constraints, and limited computing power. The routing protocol design becomes crucial to WBAN and significantly impacts the communication stack and network performance. High node mobility in WBAN results in quick topology changes, affecting network scalability. Node clustering is one of many other mechanisms used in WBANs to address this issue. We consider optimization factors like distance, latency, and power consumption of IoT devices to achieve the desired CH selection. This paper proposes a high-level CH selection and routing approach using a hybrid fuzzy with a modified Rider Optimization Algorithm (MROA). This research work is implemented using MATLAB software. The simulations are carried out under a range of conditions. In terms of energy consumption and network life time, the proposed scheme outperforms current state-of-the-art techniques like Low Energy Adaptive Clustering Hierarchy (LEACH), Energy Control Routing Algorithm (ECCRA), Energy Efficient Routing Protocol (EERP), and Simplified Energy Balancing Alternative Aware Routing Algorithm (SEAR).\",\"PeriodicalId\":91709,\"journal\":{\"name\":\"International journal of machine learning and computing\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of machine learning and computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53759/7669/jmc202303016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of machine learning and computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202303016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy Efficient Clustering and Routing Using Hybrid Fuzzy with Modified Rider Optimization Algorithm in IoT - Enabled Wireless Body Area Network
Wireless sensor networks are widely used in various Internet of Things applications, including healthcare, underwater sensor networks, body area networks, and multiple offices. Wireless Body Area Network (WBAN) simplifies medical department tasks and provides a solution that reduces the possibility of errors in the medical diagnostic process. The growing demand for real-time applications in such networks will stimulate significant research activity. Designing scenarios for such critical events while maintaining energy efficiency is difficult due to dynamic changes in network topology, strict power constraints, and limited computing power. The routing protocol design becomes crucial to WBAN and significantly impacts the communication stack and network performance. High node mobility in WBAN results in quick topology changes, affecting network scalability. Node clustering is one of many other mechanisms used in WBANs to address this issue. We consider optimization factors like distance, latency, and power consumption of IoT devices to achieve the desired CH selection. This paper proposes a high-level CH selection and routing approach using a hybrid fuzzy with a modified Rider Optimization Algorithm (MROA). This research work is implemented using MATLAB software. The simulations are carried out under a range of conditions. In terms of energy consumption and network life time, the proposed scheme outperforms current state-of-the-art techniques like Low Energy Adaptive Clustering Hierarchy (LEACH), Energy Control Routing Algorithm (ECCRA), Energy Efficient Routing Protocol (EERP), and Simplified Energy Balancing Alternative Aware Routing Algorithm (SEAR).