揭示隐形:高级团队运动分析的视觉分析和解释性故事

M. Stein, Thorsten Breitkreutz, Johannes Häussler, Daniel Seebacher, C. Niederberger, T. Schreck, Michael Grossniklaus, D. Keim, H. Janetzko
{"title":"揭示隐形:高级团队运动分析的视觉分析和解释性故事","authors":"M. Stein, Thorsten Breitkreutz, Johannes Häussler, Daniel Seebacher, C. Niederberger, T. Schreck, Michael Grossniklaus, D. Keim, H. Janetzko","doi":"10.1109/BDVA.2018.8534022","DOIUrl":null,"url":null,"abstract":"The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.","PeriodicalId":92742,"journal":{"name":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","volume":"298 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Revealing the Invisible: Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis\",\"authors\":\"M. Stein, Thorsten Breitkreutz, Johannes Häussler, Daniel Seebacher, C. Niederberger, T. Schreck, Michael Grossniklaus, D. Keim, H. Janetzko\",\"doi\":\"10.1109/BDVA.2018.8534022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.\",\"PeriodicalId\":92742,\"journal\":{\"name\":\"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)\",\"volume\":\"298 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BDVA.2018.8534022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BDVA.2018.8534022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

对侵入性团队运动的分析通常集中在集体运动行为的合作和竞争方面。主要目标是识别和解释策略,并最终制定新策略。在视觉体育分析中,已经提出了一系列不同的视觉交互分析技术,例如,基于可视化使用例如轨迹,图形,热图和动画。为特定情况确定合适的可视化是成功分析的关键。现有系统支持对不同可视化方面的交互选择,以支持分析过程。然而,对适当的可视化进行交互式选择是一项困难、复杂且耗时的任务。在本文中,我们提出了一个四步分析概念工作流,用于自动选择足球比赛中关键情况的适当视图。我们的概念涵盖了比赛情况的分类、规范、解释和改变,有效地使分析人员能够专注于重要的比赛情况和确定备选的行动。通过沉浸式视觉分析和描述性故事情节,将抽象可视化与真实世界的视频记录相结合,我们支持领域专家了解关键情况。我们通过两个概念证明证明了我们提出的概念工作流的有效性,并通过将我们的结果与领域专家的手动视频注释进行比较来评估我们的系统。初步的专家反馈表明,我们提出的概念提高了对竞技体育的理解,并导致了更有效的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing the Invisible: Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis
The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Immersive Analytics Multisensory Immersive Analytics Immersive Analytics Applications in Life and Health Sciences Immersive Analytics: An Introduction Immersive Human-Centered Computational Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1