多目标进化算法公平比较的种群大小规范

H. Ishibuchi, Lie Meng Pang, Ke Shang
{"title":"多目标进化算法公平比较的种群大小规范","authors":"H. Ishibuchi, Lie Meng Pang, Ke Shang","doi":"10.1109/SMC42975.2020.9282850","DOIUrl":null,"url":null,"abstract":"In general, performance comparison results of optimization algorithms depend on the parameter specifications in each algorithm. For fair comparison, it may be needed to use the best specifications for each algorithm instead of using the same specifications for all algorithms. This is because each algorithm has its best specifications. However, in the evolutionary multi-objective optimization (EMO) field, performance comparison has usually been performed under the same parameter specifications for all algorithms. Especially, the same population size has always been used. In this paper, we discuss this practice from a viewpoint of fair comparison of EMO algorithms. First, we demonstrate that performance comparison results depend on the population size. Next, we explain a new trend of performance comparison where each algorithm is evaluated by selecting a pre-specified number of solutions from the examined solutions (i.e., by selecting a solution subset with a pre-specified size). Then, we discuss the selected subset size specification. Through computational experiments, we show that performance comparison results do not strongly depend on the selected subset size while they depend on the population size.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"35 1","pages":"1095-1102"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Population Size Specification for Fair Comparison of Multi-objective Evolutionary Algorithms\",\"authors\":\"H. Ishibuchi, Lie Meng Pang, Ke Shang\",\"doi\":\"10.1109/SMC42975.2020.9282850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, performance comparison results of optimization algorithms depend on the parameter specifications in each algorithm. For fair comparison, it may be needed to use the best specifications for each algorithm instead of using the same specifications for all algorithms. This is because each algorithm has its best specifications. However, in the evolutionary multi-objective optimization (EMO) field, performance comparison has usually been performed under the same parameter specifications for all algorithms. Especially, the same population size has always been used. In this paper, we discuss this practice from a viewpoint of fair comparison of EMO algorithms. First, we demonstrate that performance comparison results depend on the population size. Next, we explain a new trend of performance comparison where each algorithm is evaluated by selecting a pre-specified number of solutions from the examined solutions (i.e., by selecting a solution subset with a pre-specified size). Then, we discuss the selected subset size specification. Through computational experiments, we show that performance comparison results do not strongly depend on the selected subset size while they depend on the population size.\",\"PeriodicalId\":6718,\"journal\":{\"name\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"volume\":\"35 1\",\"pages\":\"1095-1102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC42975.2020.9282850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9282850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通常,优化算法的性能比较结果取决于每种算法的参数规范。为了公平比较,可能需要对每个算法使用最佳规范,而不是对所有算法使用相同的规范。这是因为每种算法都有其最佳规范。然而,在进化多目标优化(EMO)领域,通常在相同的参数规范下对所有算法进行性能比较。特别是,一直使用相同的人口规模。在本文中,我们从EMO算法的公平比较的观点来讨论这一实践。首先,我们证明了性能比较结果取决于人口规模。接下来,我们解释了性能比较的新趋势,其中通过从检查的解决方案中选择预先指定数量的解决方案来评估每个算法(即,通过选择具有预先指定大小的解决方案子集)。然后,我们讨论选择的子集大小规范。通过计算实验,我们表明性能比较结果不依赖于所选择的子集大小,而依赖于总体大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Population Size Specification for Fair Comparison of Multi-objective Evolutionary Algorithms
In general, performance comparison results of optimization algorithms depend on the parameter specifications in each algorithm. For fair comparison, it may be needed to use the best specifications for each algorithm instead of using the same specifications for all algorithms. This is because each algorithm has its best specifications. However, in the evolutionary multi-objective optimization (EMO) field, performance comparison has usually been performed under the same parameter specifications for all algorithms. Especially, the same population size has always been used. In this paper, we discuss this practice from a viewpoint of fair comparison of EMO algorithms. First, we demonstrate that performance comparison results depend on the population size. Next, we explain a new trend of performance comparison where each algorithm is evaluated by selecting a pre-specified number of solutions from the examined solutions (i.e., by selecting a solution subset with a pre-specified size). Then, we discuss the selected subset size specification. Through computational experiments, we show that performance comparison results do not strongly depend on the selected subset size while they depend on the population size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
At-the-Edge Data Processing for Low Latency High Throughput Machine Learning Algorithms Machine Learning for First Principles Calculations of Material Properties for Ferromagnetic Materials Mobility Aware Computation Offloading Model for Edge Computing Toward an Autonomous Workflow for Single Crystal Neutron Diffraction Virtual Infrastructure Twins: Software Testing Platforms for Computing-Instrument Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1