基于CNN机器学习算法的实时交通标志识别关键研究

Megha Vamsi Kiran Choda, Sri Vardhan Perla, Brahmender Shaik, Yuva Teja Anirudh Yelchuru, P. Yalla
{"title":"基于CNN机器学习算法的实时交通标志识别关键研究","authors":"Megha Vamsi Kiran Choda, Sri Vardhan Perla, Brahmender Shaik, Yuva Teja Anirudh Yelchuru, P. Yalla","doi":"10.1109/IDCIoT56793.2023.10053394","DOIUrl":null,"url":null,"abstract":"Real-Time Traffic Sign Recognition System (RTTSRS) is used for recognizing the traffic signboards (Take left, take right, speed limit 60 kmph… etc.), it plays a crucial role in the domains of driverless vehicles etc. By using Real-Time Traffic Sign Recognition, Traffic related problems can be reduced. It is categorized into two types- localization and recognition. Localization deals with identifying and locating traffic sign regions within the radius. Real-Time Traffic Sign Recognition is used to identify the traffic sign region within the space (rectangular) provided. This study describes an approach for a traffic sign recognition system, many machine learning algorithms like Support Vector Machine (SVM) and Convolutional Neural Networks (CNN) have been studied for recognizing traffic signs. This study has conducted a critical investigation on various machine learning algorithms which gives high accuracy to predict, recognize real-time traffic signs.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"20 1","pages":"445-450"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Critical Survey on Real-Time Traffic Sign Recognition by using CNN Machine Learning Algorithm\",\"authors\":\"Megha Vamsi Kiran Choda, Sri Vardhan Perla, Brahmender Shaik, Yuva Teja Anirudh Yelchuru, P. Yalla\",\"doi\":\"10.1109/IDCIoT56793.2023.10053394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-Time Traffic Sign Recognition System (RTTSRS) is used for recognizing the traffic signboards (Take left, take right, speed limit 60 kmph… etc.), it plays a crucial role in the domains of driverless vehicles etc. By using Real-Time Traffic Sign Recognition, Traffic related problems can be reduced. It is categorized into two types- localization and recognition. Localization deals with identifying and locating traffic sign regions within the radius. Real-Time Traffic Sign Recognition is used to identify the traffic sign region within the space (rectangular) provided. This study describes an approach for a traffic sign recognition system, many machine learning algorithms like Support Vector Machine (SVM) and Convolutional Neural Networks (CNN) have been studied for recognizing traffic signs. This study has conducted a critical investigation on various machine learning algorithms which gives high accuracy to predict, recognize real-time traffic signs.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"20 1\",\"pages\":\"445-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实时交通标志识别系统(RTTSRS)用于识别交通标志(左转、右转、限速60公里/小时等),在无人驾驶等领域起着至关重要的作用。利用实时交通标志识别技术,可以减少交通相关问题。它分为两种类型:定位和识别。定位处理的是识别和定位半径内的交通标志区域。实时交通标志识别用于在提供的空间(矩形)内识别交通标志区域。本研究描述了一种交通标志识别系统的方法,许多机器学习算法,如支持向量机(SVM)和卷积神经网络(CNN)已经被研究用于识别交通标志。本研究对各种机器学习算法进行了重要的研究,这些算法可以高精度地预测、识别实时交通标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Critical Survey on Real-Time Traffic Sign Recognition by using CNN Machine Learning Algorithm
Real-Time Traffic Sign Recognition System (RTTSRS) is used for recognizing the traffic signboards (Take left, take right, speed limit 60 kmph… etc.), it plays a crucial role in the domains of driverless vehicles etc. By using Real-Time Traffic Sign Recognition, Traffic related problems can be reduced. It is categorized into two types- localization and recognition. Localization deals with identifying and locating traffic sign regions within the radius. Real-Time Traffic Sign Recognition is used to identify the traffic sign region within the space (rectangular) provided. This study describes an approach for a traffic sign recognition system, many machine learning algorithms like Support Vector Machine (SVM) and Convolutional Neural Networks (CNN) have been studied for recognizing traffic signs. This study has conducted a critical investigation on various machine learning algorithms which gives high accuracy to predict, recognize real-time traffic signs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
期刊最新文献
Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain Prevention of Aflatoxin in Peanut Using Naive Bayes Model Smart Energy Meter and Monitoring System using Internet of Things (IoT) Maximizing the Net Present Value of Resource-Constrained Project Scheduling Problems using Recurrent Neural Network with Genetic Algorithm Framework for Implementation of Personality Inventory Model on Natural Language Processing with Personality Traits Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1