{"title":"铜包体对羟基磷灰石晶格参数、化学计量和热相变的影响","authors":"S. K. Kucko, T. Keenan","doi":"10.1557/s43578-023-01114-6","DOIUrl":null,"url":null,"abstract":"Cu inclusion in hydroxyapatite (HA) can provide newfound advantages. Still, fundamental properties of these materials are understudied. Motivated by this, a series of Cu-containing HA (CuHA) was synthesized via aqueous co-precipitation. Pawley fitting of X-ray powder diffraction (XRD) patterns revealed a dilation of lattice parameters with increasing Cu content, causing a maximum expansion of unit cell volume from 518.2(7) to 528.0(4) Å3. Functional group presence and stoichiometry were investigated using spectroscopic characterization and X-ray fluorescence (XRF), respectively. High-temperature in-situ XRD followed by quantitative phase identification assessed the thermal transition to β-tricalcium phosphate (β-TCP). As Cu target incorporation increased from 0 to 5 mol% (actual 0–1.96 mol%), there was an observable increase in stoichiometry, carbonate removal, and resistance to thermal phase transition. This work also emphasizes the tunability of certain properties through Ca deprivation in the synthesis method. Some key structure–property relationships are identified to build on current understanding of CuHA and its complexities.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"29 1","pages":"3966 - 3979"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of copper inclusion on lattice parameters, stoichiometry, and thermal phase transition of hydroxyapatite\",\"authors\":\"S. K. Kucko, T. Keenan\",\"doi\":\"10.1557/s43578-023-01114-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu inclusion in hydroxyapatite (HA) can provide newfound advantages. Still, fundamental properties of these materials are understudied. Motivated by this, a series of Cu-containing HA (CuHA) was synthesized via aqueous co-precipitation. Pawley fitting of X-ray powder diffraction (XRD) patterns revealed a dilation of lattice parameters with increasing Cu content, causing a maximum expansion of unit cell volume from 518.2(7) to 528.0(4) Å3. Functional group presence and stoichiometry were investigated using spectroscopic characterization and X-ray fluorescence (XRF), respectively. High-temperature in-situ XRD followed by quantitative phase identification assessed the thermal transition to β-tricalcium phosphate (β-TCP). As Cu target incorporation increased from 0 to 5 mol% (actual 0–1.96 mol%), there was an observable increase in stoichiometry, carbonate removal, and resistance to thermal phase transition. This work also emphasizes the tunability of certain properties through Ca deprivation in the synthesis method. Some key structure–property relationships are identified to build on current understanding of CuHA and its complexities.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"29 1\",\"pages\":\"3966 - 3979\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01114-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01114-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of copper inclusion on lattice parameters, stoichiometry, and thermal phase transition of hydroxyapatite
Cu inclusion in hydroxyapatite (HA) can provide newfound advantages. Still, fundamental properties of these materials are understudied. Motivated by this, a series of Cu-containing HA (CuHA) was synthesized via aqueous co-precipitation. Pawley fitting of X-ray powder diffraction (XRD) patterns revealed a dilation of lattice parameters with increasing Cu content, causing a maximum expansion of unit cell volume from 518.2(7) to 528.0(4) Å3. Functional group presence and stoichiometry were investigated using spectroscopic characterization and X-ray fluorescence (XRF), respectively. High-temperature in-situ XRD followed by quantitative phase identification assessed the thermal transition to β-tricalcium phosphate (β-TCP). As Cu target incorporation increased from 0 to 5 mol% (actual 0–1.96 mol%), there was an observable increase in stoichiometry, carbonate removal, and resistance to thermal phase transition. This work also emphasizes the tunability of certain properties through Ca deprivation in the synthesis method. Some key structure–property relationships are identified to build on current understanding of CuHA and its complexities.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.