{"title":"基于谐波性和谱平滑性的多基频估计","authors":"Anssi Klapuri","doi":"10.1109/TSA.2003.815516","DOIUrl":null,"url":null,"abstract":"A new method for estimating the fundamental frequencies of concurrent musical sounds is described. The method is based on an iterative approach, where the fundamental frequency of the most prominent sound is estimated, the sound is subtracted from the mixture, and the process is repeated for the residual signal. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the subtraction stage, the spectral smoothness principle is proposed as an efficient new mechanism in estimating the spectral envelopes of detected sounds. With these techniques, multiple fundamental frequency estimation can be performed quite accurately in a single time frame, without the use of long-term temporal features. The experimental data comprised recorded samples of 30 musical instruments from four different sources. Multiple fundamental frequency estimation was performed for random sound source and pitch combinations. Error rates for mixtures ranging from one to six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and 18%, respectively. In musical interval and chord identification tasks, the algorithm outperformed the average of ten trained musicians. The method works robustly in noise, and is able to handle sounds that exhibit inharmonicities. The inharmonicity factor and spectral envelope of each sound is estimated along with the fundamental frequency.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"373 1","pages":"804-816"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"352","resultStr":"{\"title\":\"Multiple fundamental frequency estimation based on harmonicity and spectral smoothness\",\"authors\":\"Anssi Klapuri\",\"doi\":\"10.1109/TSA.2003.815516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for estimating the fundamental frequencies of concurrent musical sounds is described. The method is based on an iterative approach, where the fundamental frequency of the most prominent sound is estimated, the sound is subtracted from the mixture, and the process is repeated for the residual signal. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the subtraction stage, the spectral smoothness principle is proposed as an efficient new mechanism in estimating the spectral envelopes of detected sounds. With these techniques, multiple fundamental frequency estimation can be performed quite accurately in a single time frame, without the use of long-term temporal features. The experimental data comprised recorded samples of 30 musical instruments from four different sources. Multiple fundamental frequency estimation was performed for random sound source and pitch combinations. Error rates for mixtures ranging from one to six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and 18%, respectively. In musical interval and chord identification tasks, the algorithm outperformed the average of ten trained musicians. The method works robustly in noise, and is able to handle sounds that exhibit inharmonicities. The inharmonicity factor and spectral envelope of each sound is estimated along with the fundamental frequency.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"373 1\",\"pages\":\"804-816\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"352\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.815516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.815516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple fundamental frequency estimation based on harmonicity and spectral smoothness
A new method for estimating the fundamental frequencies of concurrent musical sounds is described. The method is based on an iterative approach, where the fundamental frequency of the most prominent sound is estimated, the sound is subtracted from the mixture, and the process is repeated for the residual signal. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the subtraction stage, the spectral smoothness principle is proposed as an efficient new mechanism in estimating the spectral envelopes of detected sounds. With these techniques, multiple fundamental frequency estimation can be performed quite accurately in a single time frame, without the use of long-term temporal features. The experimental data comprised recorded samples of 30 musical instruments from four different sources. Multiple fundamental frequency estimation was performed for random sound source and pitch combinations. Error rates for mixtures ranging from one to six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and 18%, respectively. In musical interval and chord identification tasks, the algorithm outperformed the average of ten trained musicians. The method works robustly in noise, and is able to handle sounds that exhibit inharmonicities. The inharmonicity factor and spectral envelope of each sound is estimated along with the fundamental frequency.