基于谐波性和谱平滑性的多基频估计

Anssi Klapuri
{"title":"基于谐波性和谱平滑性的多基频估计","authors":"Anssi Klapuri","doi":"10.1109/TSA.2003.815516","DOIUrl":null,"url":null,"abstract":"A new method for estimating the fundamental frequencies of concurrent musical sounds is described. The method is based on an iterative approach, where the fundamental frequency of the most prominent sound is estimated, the sound is subtracted from the mixture, and the process is repeated for the residual signal. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the subtraction stage, the spectral smoothness principle is proposed as an efficient new mechanism in estimating the spectral envelopes of detected sounds. With these techniques, multiple fundamental frequency estimation can be performed quite accurately in a single time frame, without the use of long-term temporal features. The experimental data comprised recorded samples of 30 musical instruments from four different sources. Multiple fundamental frequency estimation was performed for random sound source and pitch combinations. Error rates for mixtures ranging from one to six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and 18%, respectively. In musical interval and chord identification tasks, the algorithm outperformed the average of ten trained musicians. The method works robustly in noise, and is able to handle sounds that exhibit inharmonicities. The inharmonicity factor and spectral envelope of each sound is estimated along with the fundamental frequency.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"373 1","pages":"804-816"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"352","resultStr":"{\"title\":\"Multiple fundamental frequency estimation based on harmonicity and spectral smoothness\",\"authors\":\"Anssi Klapuri\",\"doi\":\"10.1109/TSA.2003.815516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for estimating the fundamental frequencies of concurrent musical sounds is described. The method is based on an iterative approach, where the fundamental frequency of the most prominent sound is estimated, the sound is subtracted from the mixture, and the process is repeated for the residual signal. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the subtraction stage, the spectral smoothness principle is proposed as an efficient new mechanism in estimating the spectral envelopes of detected sounds. With these techniques, multiple fundamental frequency estimation can be performed quite accurately in a single time frame, without the use of long-term temporal features. The experimental data comprised recorded samples of 30 musical instruments from four different sources. Multiple fundamental frequency estimation was performed for random sound source and pitch combinations. Error rates for mixtures ranging from one to six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and 18%, respectively. In musical interval and chord identification tasks, the algorithm outperformed the average of ten trained musicians. The method works robustly in noise, and is able to handle sounds that exhibit inharmonicities. The inharmonicity factor and spectral envelope of each sound is estimated along with the fundamental frequency.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"373 1\",\"pages\":\"804-816\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"352\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.815516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.815516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 352

摘要

提出了一种估计并发音基频的新方法。该方法基于迭代方法,其中估计最突出声音的基频,从混合中减去声音,并重复该过程以获得剩余信号。在估计阶段,提出了一种利用同时谱分量的频率关系而不假设理想谐波的算法。在减法阶段,提出了谱平滑原理作为估计检测声音谱包络的有效新机制。使用这些技术,可以在单个时间框架内相当准确地执行多个基频估计,而无需使用长期时间特征。实验数据包括来自四个不同来源的30种乐器的记录样本。对随机声源和基音组合进行了多重基频估计。从一个到六个同步声音的混合错误率分别为1.8%,3.9%,6.3%,9.9%,14%和18%。在音程和和弦识别任务中,该算法的表现优于10名训练有素的音乐家的平均水平。该方法在噪声中工作稳定,并且能够处理表现出不和谐的声音。每个声音的非谐波系数和频谱包络随着基频估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple fundamental frequency estimation based on harmonicity and spectral smoothness
A new method for estimating the fundamental frequencies of concurrent musical sounds is described. The method is based on an iterative approach, where the fundamental frequency of the most prominent sound is estimated, the sound is subtracted from the mixture, and the process is repeated for the residual signal. For the estimation stage, an algorithm is proposed which utilizes the frequency relationships of simultaneous spectral components, without assuming ideal harmonicity. For the subtraction stage, the spectral smoothness principle is proposed as an efficient new mechanism in estimating the spectral envelopes of detected sounds. With these techniques, multiple fundamental frequency estimation can be performed quite accurately in a single time frame, without the use of long-term temporal features. The experimental data comprised recorded samples of 30 musical instruments from four different sources. Multiple fundamental frequency estimation was performed for random sound source and pitch combinations. Error rates for mixtures ranging from one to six simultaneous sounds were 1.8%, 3.9%, 6.3%, 9.9%, 14%, and 18%, respectively. In musical interval and chord identification tasks, the algorithm outperformed the average of ten trained musicians. The method works robustly in noise, and is able to handle sounds that exhibit inharmonicities. The inharmonicity factor and spectral envelope of each sound is estimated along with the fundamental frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Errata to "Using Steady-State Suppression to Improve Speech Intelligibility in Reverberant Environments for Elderly Listeners" Farewell Editorial Inaugural Editorial: Riding the Tidal Wave of Human-Centric Information Processing - Innovate, Outreach, Collaborate, Connect, Expand, and Win Three-Dimensional Sound Field Reproduction Using Multiple Circular Loudspeaker Arrays Introduction to the Special Issue on Processing Reverberant Speech: Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1