利用单幅图像超分辨率的反射和旋转不变性

S. Donné, Laurens Meeus, H. Luong, B. Goossens, W. Philips
{"title":"利用单幅图像超分辨率的反射和旋转不变性","authors":"S. Donné, Laurens Meeus, H. Luong, B. Goossens, W. Philips","doi":"10.1109/CVPRW.2017.141","DOIUrl":null,"url":null,"abstract":"Stationarity of reconstruction problems is the crux to enabling convolutional neural networks for many image processing tasks: the output estimate for a pixel is generally not dependent on its location within the image but only on its immediate neighbourhood. We expect other invariances, too. For most pixel-processing tasks, rigid transformations should commute with the processing: a rigid transformation of the input should result in that same transformation of the output. In existing literature this is taken into account indirectly by augmenting the training set: reflected and rotated versions of the inputs are also fed to the network when optimizing the network weights. In contrast, we enforce this invariance through the network design. Because of the encompassing nature of the proposed architecture, it can directly enhance existing CNN-based algorithms. We show how it can be applied to SRCNN and FSRCNN both, speeding up convergence in the initial training phase, and improving performance both for pretrained weights and after finetuning.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"22 1","pages":"1043-1049"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploiting Reflectional and Rotational Invariance in Single Image Superresolution\",\"authors\":\"S. Donné, Laurens Meeus, H. Luong, B. Goossens, W. Philips\",\"doi\":\"10.1109/CVPRW.2017.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stationarity of reconstruction problems is the crux to enabling convolutional neural networks for many image processing tasks: the output estimate for a pixel is generally not dependent on its location within the image but only on its immediate neighbourhood. We expect other invariances, too. For most pixel-processing tasks, rigid transformations should commute with the processing: a rigid transformation of the input should result in that same transformation of the output. In existing literature this is taken into account indirectly by augmenting the training set: reflected and rotated versions of the inputs are also fed to the network when optimizing the network weights. In contrast, we enforce this invariance through the network design. Because of the encompassing nature of the proposed architecture, it can directly enhance existing CNN-based algorithms. We show how it can be applied to SRCNN and FSRCNN both, speeding up convergence in the initial training phase, and improving performance both for pretrained weights and after finetuning.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"22 1\",\"pages\":\"1043-1049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

重建问题的平稳性是卷积神经网络实现许多图像处理任务的关键:一个像素的输出估计通常不依赖于它在图像中的位置,而只依赖于它的近邻。我们还期待其他的不变性。对于大多数像素处理任务,严格的转换应该与处理同步进行:输入的严格转换应该导致输出的相同转换。在现有文献中,这是通过增加训练集来间接考虑的:在优化网络权重时,也将输入的反射和旋转版本馈给网络。相反,我们通过网络设计来加强这种不变性。由于所提出的架构的包涵性,它可以直接增强现有的基于cnn的算法。我们展示了如何将其应用于SRCNN和FSRCNN,加速初始训练阶段的收敛,并提高预训练权值和微调后的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting Reflectional and Rotational Invariance in Single Image Superresolution
Stationarity of reconstruction problems is the crux to enabling convolutional neural networks for many image processing tasks: the output estimate for a pixel is generally not dependent on its location within the image but only on its immediate neighbourhood. We expect other invariances, too. For most pixel-processing tasks, rigid transformations should commute with the processing: a rigid transformation of the input should result in that same transformation of the output. In existing literature this is taken into account indirectly by augmenting the training set: reflected and rotated versions of the inputs are also fed to the network when optimizing the network weights. In contrast, we enforce this invariance through the network design. Because of the encompassing nature of the proposed architecture, it can directly enhance existing CNN-based algorithms. We show how it can be applied to SRCNN and FSRCNN both, speeding up convergence in the initial training phase, and improving performance both for pretrained weights and after finetuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1